Russian Physics Journal

, Volume 57, Issue 4, pp 482–489 | Cite as

Effects of Thermal Fluctuations in the Interaction of a Small Number of Gas Particles with a Surface


The statistical mechanics of small systems is considered, where by virtue of physical or geometric limitations it is impossible to realize the transition to the thermodynamic limit. Fundamental effects are discussed which distinguish small equilibrium systems from large equilibrium systems: non-equivalence of ensembles, nonadditivity of thermodynamic potentials, the influence of fluctuations, complexity of the description of phase transitions. Along with a general analysis of features of the thermodynamic behavior of small systems, corresponding results are presented for the problem of adsorption of a gas on a surface.


statistical physics small systems fluctuations adsorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Ruelle, Statistical Mechanics: Rigorous Results, World Scientific Publishing Company, Singapore (1999).CrossRefMATHGoogle Scholar
  2. 2.
    R. C. Balescu, Equilibrium and Non-equilibrium Statistical Mechanics, First Edition, John Wiley & Sons, New York (1975).Google Scholar
  3. 3.
    T. I. Hill, J. Chem. Phys., 36, No. 12, 3182 (1962).ADSGoogle Scholar
  4. 4.
    T. I. Hill, Thermodynamics of Small Systems, Dover Publications, Mineola; New York (1994).Google Scholar
  5. 5.
    C. Bustamante, J. Liphardt, and F. Ritort Farran, Phys. Today, 58, No. 7, 43–48 (2005).CrossRefGoogle Scholar
  6. 6.
    K. A. Bugaev, Phys. Part. Nucl., 38, No. 4, 447–468 (2007).CrossRefGoogle Scholar
  7. 7.
    I. P. Bazarov, Thermodynamics [in Russian], Vysshaya Shkola, Moscow (1991).Google Scholar
  8. 8.
    I. Prigozhin and R. Defay, Chemical Thermodynamics, Longmans, London (1954).Google Scholar
  9. 9.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Statistical Physics, Vol. 5, Third Edition, Butterworth-Heinemann, Oxford (1975).Google Scholar
  10. 10.
    C. J. Preston, Gibbs States on Countable Sets (Cambridge Tracts in Mathematics), Cambridge University Press, Cambridge (2008).Google Scholar
  11. 11.
    I. Langmuir, J. Am. Chem. Soc., 40, No. 9, 1361–1403 (1918).CrossRefGoogle Scholar
  12. 12.
    R. J. Ambrose et al., SPE J., 17, No. 1, 219–229 (2012).CrossRefGoogle Scholar
  13. 13.
    S. K. Schnell et al., Chem. Phys. Lett., 504, No. 4, 199–201 (2011).ADSGoogle Scholar
  14. 14.
    T. F. T. Rexer et al., Energy & Fuels, 27, 402–466 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Moscow Institute of Physics and Technology (State University)MoscowRussia
  2. 2.Schlumberger Moscow Scientific Research CenterMoscowRussia

Personalised recommendations