Russian Physics Journal

, Volume 57, Issue 3, pp 370–375 | Cite as

Parameters of High-Temperature Diffusion and Evaporation of Alloying Elements of Thermal Emission Cathodes

  • B. D. Tsydypov
Plasma Physics

In a joint statement, nonlinear thermal and diffusion problems are solved by a numerical method to analyze the processes of heat and mass transfer and evaporation of activators of thermal emission cathodes for high-current plasma systems. For the two-dimensional diffusion problem, the boundary conditions are strictly formulated and nonlinear temperature dependences of the diffusion coefficients and evaporation rates of emissive and alloying elements are considered. Various mechanisms of activator diffusion are also studied together with the main regularities of heat and mass transfer and activator evaporation as functions of the system parameters.


diffusion evaporation activator thermal cathode low-temperature plasma generator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. E. Fortov, ed., Encyclopedia of Low-Temperature Plasmas. Introductory Volume IV [in Russian], Nauka, Moscow (2000).Google Scholar
  2. 2.
    M. F. Zhukov, I. M. Zasypkin, A. N. Timoshevskii, et al., Electroarc Generators of Thermal Plasma [in Russian], Nauka, Novosibirsk (1999).Google Scholar
  3. 3.
    V. M. Amosov, B. A. Karelin, and V. V. Kubyshkin, Electrode Materials Based on Refractory Metals [in Russian], Metallurgiya, Moscow (1976).Google Scholar
  4. 4.
    V. F. Gordeev, A. V. Pustogarov, Thermal Emission Arc Cathodes [in Russian], Energoatomizdat, Moscow (1988).Google Scholar
  5. 5.
    B. D. Tsydypov and I. G. Simakov, Teplofiz. Vysok. Temp., 49, No. 5, 663–670 (2011).Google Scholar
  6. 6.
    M. F. Zhukov, N. P. Kozlov, V. V. Guzhkov, et al., Dokl. Akad. Nauk SSSR, 260, No. 6, 1354–1356 (1981).ADSGoogle Scholar
  7. 7.
    B. D. Tsydypov, Vestn. Buryatsk. Gosud. Univ., Ser. Matem. Informat., No. 9, 280–284 (2011).Google Scholar
  8. 8.
    B. S. Bokshtein and A. B. Yaroslavtsev, Diffusion of Atoms and Ions in Solids [in Russian], Publishing House of Moscow Institute of Steels and Alloys, Moscow (2005).Google Scholar
  9. 9.
    I. Kaur and W. Gust, Grain and Interphase Boundary Diffusion [Russian translation], Mashinostroenie, Moscow (1991).Google Scholar
  10. 10.
    J. Crank, The Mathematics of Diffusion, Clarendon Press, Oxford (1975).Google Scholar
  11. 11.
    N. A. Vatolin, G. K. Moiseev, and B. G. Trusov, Thermodynamic Modeling in High-Temperature Inorganic Systems, Metallurgiya, Moscow (1994).Google Scholar
  12. 12.
    V. B. Arzamasov and A. N. Volchkov, Fiz. Khim. Obrab. Mater., No. 3, 121–124 (1988).Google Scholar
  13. 13.
    V. E. Korsukov, P. V. Patrievskii, F. G. Rutberg, and N. M. Tyutina, Zh. Tekh. Fiz., 56, No. 9, 1724–1729 (1986).Google Scholar
  14. 14.
    B. D. Tsydypov, Cathode and Near-Cathode Processes in High-Current Plasma Systems. Theory and Experiment, Lambert Academics Publishing, Saarbrucken (2012).Google Scholar
  15. 15.
    M. F. Zhukov, A. S. Koroteev, and B. A. Uryukov, Applied Dynamics of Thermal Plasma [in Russian], Nauka, Novosibirsk (1975).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of Physical Materials Science of the Siberian Branch of the Russian Academy of SciencesUlan-UdeRussia

Personalised recommendations