Russian Physics Journal

, Volume 57, Issue 2, pp 152–158 | Cite as

Mathematical Model of Formation of a Crystallographic Shear Zone in the Representation of a Piecewise-Continuous Closed Dislocation Loop

  • S. N. Kolupaeva
  • A. E. Petelin

A mathematical model is devised for the formation of a crystallographic shear zone for a closed piecewisecontinuous dislocation loop which is represented in its initial configuration by a regular polygon with sides that are as small as desired and which preserves its polygonal shape as it expands. The model takes into account the orientational dependence of the line tension of the dislocation loop, and of the resistance from a dislocation pileup and generation of point defects on the orientation of the Burgers vector relative to the dislocation line.


mathematical modeling tension of a dislocation loop crystallographic slip shear zone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. E. Popov, S. N. Kolupaeva, N. A. Vikhor’, and S. I. Puspesheva, Russ. Phys. J., 43, No. 1, 71–76 (2000).CrossRefGoogle Scholar
  2. 2.
    S. I. Puspesheva, S. N. Kolupaeva, and L. E. Popov, Fizich. Mezomekh., 3, No. 3, 61–68 (2000).Google Scholar
  3. 3.
    J. P. Hirth and J. Lothe, Theory of Dislocations, McGraw-Hill, New York (1968).Google Scholar
  4. 4.
    S. N. Kolupaeva and A. E. Petelin, Vestn. Permsk. Nats. Issled. Politekhn. Univ., Mekh., No. 4, 20–32 (2012).Google Scholar
  5. 5.
    L. E. Popov, V. S. Kobytev, and T. A. Kovalevskaya, Plastic Deformation of Alloys [in Russian], Metallurgiya, Moscow (1984).Google Scholar
  6. 6.
    G. Thomas and J. Washburn, eds., Electron Microscopy and the Strength of Crystals, Interscience, New York (1963).Google Scholar
  7. 7.
    R. Berner and G. Kronmüller, Plastic Deformation of Single Crystals, A. Seeger, ed. [Russian translation], Springer, Berlin (1965).Google Scholar
  8. 8.
    K. H. Pfeiffer, P. Schiller, аnd A. Seeger, Phys. Status Solidi, 8, No. 2, 517–532 (1965).CrossRefGoogle Scholar
  9. 9.
    T. Suzuki, S. Takeuchi, and H. Yoshinaga, Dislocation Dynamics and Plasticity, Springer-Verlag, New York (1991).CrossRefGoogle Scholar
  10. 10.
    A. E. Petelin and S. N. Kolupaeva, Izv. Tomsk. Politekhn. Univ., 316, No. 5, 141–146 (2010).Google Scholar
  11. 11.
    S. N. Kolupaeva and A. E. Petelin, Vestn. Tomsk. Gosud. Arkhit. Stroit. Univ., No. 3, 159–163 (2011).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Tomsk State University of Architecture and BuildingTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia

Personalised recommendations