Russian Physics Journal

, Volume 56, Issue 12, pp 1370–1377 | Cite as

pH-Dependence of the Absorption and Fluorescent Properties of Fluorone Dyes in Aqueous Solutions


A series of fluorone dyes (fluorescein, eosin Y, erythrosin B) in aqueous solution is investigated by the absorption, fluorescence spectroscopic and time-resolved methods. Based on an analysis of the absorption spectrum amplitude, the fluorescence quantum yield, and the fluorescence lifetime vs. pH, the dissociation constants of the dyes in the ground and excited states are calculated. Quantitative and qualitative differences in the character of ionic equilibrium between fluorescein and its halogenated derivatives – eosin Y and erythrosin B – are revealed. The polarized fluorescence method has shown that the hydrodynamic diameter changes in a series of fluorone dyes due to both the increase of the bond length upon halogenation and the influence of solvation shell upon the change of the dye ionic species.


fluorescein eosin Y erythrosin B ionic species absorption spectra fluorescence spectra fluorescence lifetime polarization degree dissociation constant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. M. El-Brashy, M. M. El-Sayed, and F. A. El-Sepai, Il Farmaco, 59, 809−817 (2004).CrossRefGoogle Scholar
  2. 2.
    D. Gao, Y. Tian, F. Liang, et al., J. Lumin., 127, 515−522 (2007).CrossRefGoogle Scholar
  3. 3.
    T. N. Kirillova, M. A. Gerasimova, E. V. Nemtseva, and N. S. Kudryasheva, Anal. Bioanal. Chem., 400, 343–351 (2011).CrossRefGoogle Scholar
  4. 4.
    M. A. Gerasimova, A. G. Sizykh, and E. A. Slyusareva, J. Photochem. Photobiol., B97, 117–122 (2009).CrossRefGoogle Scholar
  5. 5.
    N. O. Mchedlov-Petrosyan, Vestn. Khar’k. Nats. Univ., No. 626, Khim., No. 11 (34), 221–313 (2004).Google Scholar
  6. 6.
    R. Sjöback, J. Nygren, and M. Kubista, Spectrochim. Acta, A51, L7–L21 (1995).ADSCrossRefGoogle Scholar
  7. 7.
    M. M. Martin and L. Lindqvist, J. Lumin., 10, 381–390 (1975).CrossRefGoogle Scholar
  8. 8.
    N. O. Mchedlov-Petrosyan and R. S. Mayorga, J. Chem. Soc. Faraday Trans., 88, 3025–3032 (1992).CrossRefGoogle Scholar
  9. 9.
    N. O. Mchedlov-Petrosyan, V. I. Kukhtik, and S. I. Egorova, Russ. J. General Chem., 76, 1607–1617 (2006).CrossRefGoogle Scholar
  10. 10.
    S. Pant, H. B. Tripathi, and D. D. Pant, J. Photochem. Photobiol., A81, 7–11 (1994).CrossRefGoogle Scholar
  11. 11.
    N. Klonis and W. H. Sawyer, J. Fluoresc., 6, 147–157 (1996).CrossRefGoogle Scholar
  12. 12.
    J. M. Alvarez-Pez, L. Ballesteros, E. Talavera, and J. Yguerabide, J. Phys. Chem., A105, 6320–6332 (2001).CrossRefGoogle Scholar
  13. 13.
    E. A. Slyusareva, M. A. Gerasimova, A. G. Sizykh, and L. M. Gornostaev, Russ. Phys. J., 54, No. 4, 485–492 (2011).CrossRefGoogle Scholar
  14. 14.
    R. Fleming, A. W. E. Knight, J. M. Morris, et al., J. Am. Chem. Soc., 99, 4306–4311 (1977).CrossRefGoogle Scholar
  15. 15.
    E. Slyusareva, A. Sizykh, A. Tyagi, and A. Penzkofer, J. Photochem. Photobiol., A208, 131−140 (2009).CrossRefGoogle Scholar
  16. 16.
    A. Penzkofer, A. Tyagi, E. Slyusareva, and A. Sizykh, Chem. Phys., 378, 58–65 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    J. R. Lakowicz, Principles of Fluorescence Spectroscopy [Russian translation], Mir, Moscow (1986).Google Scholar
  18. 18.
    E. A. Slyusareva, T. N. Tomilin, A. G. Sizykh, et al., Optics and Spectroscopy, 112, No. 5, 671–678 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    A. V. Deshpande and E. B. Namdas, J. Photochem. Photobiol., A110, 177−182 (1997).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations