Advertisement

Russian Physics Journal

, Volume 56, Issue 11, pp 1267–1273 | Cite as

Second Harmonic Generation of Self-Mode-Locked СО2-Laser Radiation in GaSe and GaSeS Crystals

  • D. E. Genin
  • D. V. Beloplotov
  • A. G. Sitnikov
  • A. N. Panchenko
  • S. Yu. Sarkisov
  • A. I. Chernyshov
Article
  • 49 Downloads

A TEA CO2 laser generating at the wavelength λ = 10.6 μm in the modes of free lasing and self-mode-locking was used to obtain and compare second harmonic generation (SHG) in GaSe and GaSe0.7S0.3 crystals. With the self-mode-locked laser, a 5-times higher energy efficiency of SHG was obtained. The efficiency of SHG in the GaSe0.7S0.3 crystal and its second-order nonlinear susceptibility were estimated and compared with their values for undoped GaSe.

Keywords

second harmonic generation CO2 laser GaSe crystal GaSe1–xSx self-mode-locking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. B. Singh, D. R. Suhre, V. Balakrishna, et al., Prog. Cryst. Growth Charact. Mater., 37, 47–102 (1998).CrossRefGoogle Scholar
  2. 2.
    G. B. Abdullaev, L. A. Kulevskii, et al., Pis’ma Zh. Eksp. Teor. Fiz., 16, No. 3, 16, No. 3, 130–133 (1972).Google Scholar
  3. 3.
    G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, et al., Kvant. Elektron., 16, No. 4, 757–763 (1989).ADSGoogle Scholar
  4. 4.
    K. Liu, J. Xu, and X.-C. Zhang, Appl. Phys. Lett., 85, 863–865 (2004).CrossRefADSGoogle Scholar
  5. 5.
    M. M. Nazarov, S. Y. Sarkisov, A. P. Shkurinov, and O. P. Tolbanov, Appl. Phys. Lett., 99, No. 8, 081105-1–3 (2011).CrossRefGoogle Scholar
  6. 6.
    V. G. Voevodin , O. V. Voevodina , S. A. Bereznaya , et al., Opt. Mater., 26, 495–499 (2004).CrossRefADSGoogle Scholar
  7. 7.
    S. I. Drapak, S. V. Gavrilyuk, Z. D. Kovalyuk, and O. S. Litvin, Fiz. Tekhn. Poluprovodn., 42, No. 4, 423–430 (2008).Google Scholar
  8. 8.
    K. R. Allakhverdiev, M. O. Yetis, S. Ozbek, et al., Laser Phys., 19, No. 5, 1092–1104 (2009)CrossRefADSGoogle Scholar
  9. 9.
    M. M. Nazarov, A. V. Kosobutsky, S. Y. Sarkisov, et al., Proc. SPIE, 7993, 799326-1–10 (2011).Google Scholar
  10. 10.
    S. Yu. Sarkisov, V. A. Novikov, A. G. Sitnikov, et al., Fund. Probl. Sovrem. Materialoved., 7, No. 4, 7–13 (2010).Google Scholar
  11. 11.
    V. Petrov, V. L. Panyutin, A. Tyazhev, et al., Laser Phys., 21, No. 4, 774–781 (2011).CrossRefADSGoogle Scholar
  12. 12.
    V. M. Orlovskii, A. N. Panchenko, and V. F. Tarasenko, Kvant. Elektron., 40, No. 3, 192–194 (2010).CrossRefADSGoogle Scholar
  13. 13.
    C.-W. Chen, Y.-K. Hsu, J. Y. Huang, et al., Opt. Express, 14, No. 22, 10636–10644 (2006).CrossRefADSGoogle Scholar
  14. 14.
    K. R. Allakhverdiev, R. I. Guliev, E. Yu. Salaev, and V. V. Smirnov, Kvant. Elektron., 9, No. 7, 1483–1485 (1982).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • D. E. Genin
    • 1
  • D. V. Beloplotov
    • 2
  • A. G. Sitnikov
    • 1
  • A. N. Panchenko
    • 1
  • S. Yu. Sarkisov
    • 3
  • A. I. Chernyshov
    • 3
  1. 1.High-Current Electronics Institute of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia
  3. 3.V. D. Kuznetsov Siberian Physical-Technical Institute at National Research Tomsk State UniversityTomskRussia

Personalised recommendations