Russian Physics Journal

, Volume 56, Issue 9, pp 1102–1105 | Cite as

The Dirac Equation in the Fractional Calculus

  • V. S. Kirchanov


Dirac equation fractional derivatives 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. M. Rabei, K. I. Nawfleh, R. S. Hijjawi, et al., J. Math. Appl., 327, 891 (2007).MATHGoogle Scholar
  2. 2.
    V. V. Uchaikin, Method of Fractional Derivatives [in Russian], Artishok, Ul'yanovsk (2008).Google Scholar
  3. 3.
    A. V. Popov, Russ. Phys. J., 48, No. 9, 947–953 (2005).CrossRefMATHGoogle Scholar
  4. 4.
    V. E. Tarasov, Models of Theoretical Physics with Integrodifferentiation of Fractional Order [in Russian], Regulyarnaya i Khaoticheskaya Dinamika, Izhevsk (2010).Google Scholar
  5. 5.
    S. G. Samko, A. A. Kilbas, and O. I. Marichev, Integrals and Derivatives of Fractional Order and Some of Their Applications [in Russian], Nauka i Tekhnika, Minsk (1987).Google Scholar
  6. 6.
    V. S. Kirchanov, Russ. Phys. J., 49, No. 12, 1294–1300 (2006).CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Perm’ National Research Polytechnic UniversityPerm’Russia

Personalised recommendations