Skip to main content
Log in

Two-Photon Absorption of the DCM Molecule under Femtosecond Excitation between 720 and 920 nm

  • OPTICS AND SPECTROSCOPY
  • Published:
Russian Physics Journal Aims and scope

Nonlinear absorption of the DCM dye has been investigated by the two-quantum etalon method and the z-scan method with excitation by a tunable femtosecond Ti-sapphire laser (3 W, 140 fs, and 80 MHz). The two-photon absorption (TPA) spectrum of the DCM molecule has been obtained here for the first time between 720 and 920 nm and has been related to the absorption bands under linear excitation. It has been shown that in measurements of nonlinear absorption by the z-scan method the main contribution to changes in the transmittance comes from the triplet − triplet absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. P. Meshalkin, Opt. Spectrosc., 84, No. 2, 178–182 (1998).

    ADS  Google Scholar 

  2. J. Fu, L. A. Padilha, D. J. Hagan, et al., J. Opt. Soc. Am., B24, No. 1, 56–66 (2007).

    Article  ADS  Google Scholar 

  3. Yu. P. Meshalkin, V. A. Svetlichnyi, S. S. Chunosova, and T. N. Kopylova, Russ. Phys. J., 48, No. 11, 1182 − 1187 (2005).

    Article  Google Scholar 

  4. W. Denk, J. H. Strickler, and W. W. Webb, Science, 248, No. 4951, 73–76 (1990).

    Article  ADS  Google Scholar 

  5. N. S. Makarov, A. Rebane, M. Drobizhev, et al., J. Opt. Soc. Am., B24, No. 8, 1874–1885 (2007).

    Article  ADS  Google Scholar 

  6. M. Khurana, H. A. Collins, A. Karotki, et al., Photochem. Photobiol., 83, 1441– 1448 (2007).

    Article  Google Scholar 

  7. J. D. Bhawalkar, G. S. He, and P. N. Prasad, Rep. Prog. Phys., 59, 1041–1070 (1996).

    Article  ADS  Google Scholar 

  8. J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, et al., Opt. Lett., 22, No. 24, 1843-1845 (1997).

    Article  ADS  Google Scholar 

  9. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, Chem. Rev., 108, No. 4, 1245– 1330 (2008).

    Article  Google Scholar 

  10. V. A. Svetlichnyi, Russ. Phys. J., 52, No. 7, 661 − 667 (2009).

    Article  MATH  Google Scholar 

  11. A. Fischer, C. Cremer, and E. H. K. Stelzer, Appl. Opt., 34, No. 2, 1989–2003 (1995).

    Article  ADS  Google Scholar 

  12. E. E. Alfimov, D. E. Groshev, V. K. Makukha, and Yu. P. Meshalkin, Opt. Spectrosc., 78, No. 3, 358–360 (1995).

    ADS  Google Scholar 

  13. D. A. Oulianov, I. V. Tomov, A. S. Dvornikov, and P. M. Rentzepis, Opt. Comm., 191, 235–243 (2001).

    Article  ADS  Google Scholar 

  14. J.-Y. Cho, S. Barlow, S. R. Marder, et al., Opt. Lett., 32, No. 6, 671–673 (2007).

    Article  ADS  Google Scholar 

  15. S. S. Chunosova, V. A. Svetlichnyi, and Yu. P. Meshalkin, Quant. Electr., 35, No. 5, 415–418 (2005).

    Article  ADS  Google Scholar 

  16. N. S. Makarov, M. Drobizhev, and A. Rebane, Opt. Express, 16, No. 6, 4029– 4047 (2008).

    Article  ADS  Google Scholar 

  17. P. Sperber and A. Penzkofer, Opt. Quant. Electron., 18, 381–401 (1986).

    Article  Google Scholar 

  18. Y. Gao and M. J. Potasek, Appl. Opt., 45, No. 11, 2521–2528 (2006).

    Article  ADS  Google Scholar 

  19. B.-J. Jung, Ch.-B. Yoon, H.-K. Shim, et al., Adv. Funct. Mater., 11, No. 6, 430– 434 (2001).

    Article  Google Scholar 

  20. W. Hu, H. Ye, Ch. Li, et al., Appl. Opt., 36, No. 3, 579–583 (1997).

    Article  ADS  Google Scholar 

  21. A. M. Taleb, B. T. Chiad, and Z. S. Sadik, Renewable Energy, 30, 393–398 (2005).

    Article  Google Scholar 

  22. S. L. Bondarev, V. N. Knyukshto, V. I. Stepuro, et al., J. Appl. Spectrosc., 71, No. 2, 194–201 (2004).

    Article  ADS  Google Scholar 

  23. C. R. Moylan, S. Ermer, S. M. Lovejoy, et al., J. Am. Chem. Soc., 118, No. 51, 12950–12955 (1996).

    Article  Google Scholar 

  24. Yo. Liu, Yi. Liu, D. Zhang, et al., J. Molec. Struct., 570, 43–51 (2001).

  25. V. A. Svetlichnyi, E. A. Vaitulevich, A. P. Lugovskii, et al., Atm. Oceanic Opt., 20, No. 10, 854–861 (2007).

    Google Scholar 

  26. C. Xu and W. W. Webb, J. Opt. Soc. Am., B13, No. 3, 481–491 (1996).

    Article  ADS  Google Scholar 

  27. Yu. P. Meshalkin, V. A. Svetlichnyi, A. V. Reznichenko, et al., Quant. Electr., 33, No. 9, 803–806 (2003).

    Article  ADS  Google Scholar 

  28. A. Nag and D. Goswami, J. Photochem. Photobiol., A206, Nos. 2–3, 188–197 (2009).

    Article  Google Scholar 

  29. M. Meyer, J.-C. Mialocq, and B. Perly, J. Phys. Chem., 94, No. 1, 98–103 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Svetlichnyi.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 66–71, September, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svetlichnyi, V.A. Two-Photon Absorption of the DCM Molecule under Femtosecond Excitation between 720 and 920 nm. Russ Phys J 56, 1046–1052 (2014). https://doi.org/10.1007/s11182-014-0138-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-014-0138-5

Keywords

Navigation