Advertisement

Russian Physics Journal

, Volume 56, Issue 9, pp 1046–1052 | Cite as

Two-Photon Absorption of the DCM Molecule under Femtosecond Excitation between 720 and 920 nm

  • V. A. Svetlichnyi
OPTICS AND SPECTROSCOPY

Nonlinear absorption of the DCM dye has been investigated by the two-quantum etalon method and the z-scan method with excitation by a tunable femtosecond Ti-sapphire laser (3 W, 140 fs, and 80 MHz). The two-photon absorption (TPA) spectrum of the DCM molecule has been obtained here for the first time between 720 and 920 nm and has been related to the absorption bands under linear excitation. It has been shown that in measurements of nonlinear absorption by the z-scan method the main contribution to changes in the transmittance comes from the triplet − triplet absorption.

Keywords

two-photon absorption cross section two-quantum etalon method z-scan method absorption from excited states DCM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. P. Meshalkin, Opt. Spectrosc., 84, No. 2, 178–182 (1998).ADSGoogle Scholar
  2. 2.
    J. Fu, L. A. Padilha, D. J. Hagan, et al., J. Opt. Soc. Am., B24, No. 1, 56–66 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    Yu. P. Meshalkin, V. A. Svetlichnyi, S. S. Chunosova, and T. N. Kopylova, Russ. Phys. J., 48, No. 11, 1182 − 1187 (2005).CrossRefGoogle Scholar
  4. 4.
    W. Denk, J. H. Strickler, and W. W. Webb, Science, 248, No. 4951, 73–76 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    N. S. Makarov, A. Rebane, M. Drobizhev, et al., J. Opt. Soc. Am., B24, No. 8, 1874–1885 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    M. Khurana, H. A. Collins, A. Karotki, et al., Photochem. Photobiol., 83, 1441– 1448 (2007).CrossRefGoogle Scholar
  7. 7.
    J. D. Bhawalkar, G. S. He, and P. N. Prasad, Rep. Prog. Phys., 59, 1041–1070 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, et al., Opt. Lett., 22, No. 24, 1843-1845 (1997).ADSCrossRefGoogle Scholar
  9. 9.
    S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, Chem. Rev., 108, No. 4, 1245– 1330 (2008).CrossRefGoogle Scholar
  10. 10.
    V. A. Svetlichnyi, Russ. Phys. J., 52, No. 7, 661 − 667 (2009).CrossRefMATHGoogle Scholar
  11. 11.
    A. Fischer, C. Cremer, and E. H. K. Stelzer, Appl. Opt., 34, No. 2, 1989–2003 (1995).ADSCrossRefGoogle Scholar
  12. 12.
    E. E. Alfimov, D. E. Groshev, V. K. Makukha, and Yu. P. Meshalkin, Opt. Spectrosc., 78, No. 3, 358–360 (1995).ADSGoogle Scholar
  13. 13.
    D. A. Oulianov, I. V. Tomov, A. S. Dvornikov, and P. M. Rentzepis, Opt. Comm., 191, 235–243 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    J.-Y. Cho, S. Barlow, S. R. Marder, et al., Opt. Lett., 32, No. 6, 671–673 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    S. S. Chunosova, V. A. Svetlichnyi, and Yu. P. Meshalkin, Quant. Electr., 35, No. 5, 415–418 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    N. S. Makarov, M. Drobizhev, and A. Rebane, Opt. Express, 16, No. 6, 4029– 4047 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    P. Sperber and A. Penzkofer, Opt. Quant. Electron., 18, 381–401 (1986).CrossRefGoogle Scholar
  18. 18.
    Y. Gao and M. J. Potasek, Appl. Opt., 45, No. 11, 2521–2528 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    B.-J. Jung, Ch.-B. Yoon, H.-K. Shim, et al., Adv. Funct. Mater., 11, No. 6, 430– 434 (2001).CrossRefGoogle Scholar
  20. 20.
    W. Hu, H. Ye, Ch. Li, et al., Appl. Opt., 36, No. 3, 579–583 (1997).ADSCrossRefGoogle Scholar
  21. 21.
    A. M. Taleb, B. T. Chiad, and Z. S. Sadik, Renewable Energy, 30, 393–398 (2005).CrossRefGoogle Scholar
  22. 22.
    S. L. Bondarev, V. N. Knyukshto, V. I. Stepuro, et al., J. Appl. Spectrosc., 71, No. 2, 194–201 (2004).ADSCrossRefGoogle Scholar
  23. 23.
    C. R. Moylan, S. Ermer, S. M. Lovejoy, et al., J. Am. Chem. Soc., 118, No. 51, 12950–12955 (1996).CrossRefGoogle Scholar
  24. 24.
    Yo. Liu, Yi. Liu, D. Zhang, et al., J. Molec. Struct., 570, 43–51 (2001).Google Scholar
  25. 25.
    V. A. Svetlichnyi, E. A. Vaitulevich, A. P. Lugovskii, et al., Atm. Oceanic Opt., 20, No. 10, 854–861 (2007).Google Scholar
  26. 26.
    C. Xu and W. W. Webb, J. Opt. Soc. Am., B13, No. 3, 481–491 (1996).ADSCrossRefGoogle Scholar
  27. 27.
    Yu. P. Meshalkin, V. A. Svetlichnyi, A. V. Reznichenko, et al., Quant. Electr., 33, No. 9, 803–806 (2003).ADSCrossRefGoogle Scholar
  28. 28.
    A. Nag and D. Goswami, J. Photochem. Photobiol., A206, Nos. 2–3, 188–197 (2009).CrossRefGoogle Scholar
  29. 29.
    M. Meyer, J.-C. Mialocq, and B. Perly, J. Phys. Chem., 94, No. 1, 98–103 (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.V. D. Kuznetsov Siberian Physical-Technical Institute at the National Research Tomsk State UniversityTomskRussia

Personalised recommendations