Advertisement

Russian Physics Journal

, Volume 56, Issue 9, pp 997–1006 | Cite as

Physical properties of indium nitride, impurities, and defects

  • S. S. Khludkov
  • I. A. Prudaev
  • O. P. Tolbanov
Article

A review of the literature on the InN physical properties and state of impurities and defects in it based on the data published recently is presented. It is demonstrated that by the present time, significant progress has been made in synthesis of the material, study of its physical properties, and device making. It is established that InN has a band gap of 0.7 eV. Doping of InN with magnesium makes it possible to obtain layers with p-type conductivity and preset properties. The unique InN properties allow it to be considered as a promising material for a number of new devices.

Keywords

indium nitride physical properties impurity point defects dislocations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Himmerlich, A. Kncubel, R. Aidam, et al., J. Appl. Phys., 113, 033501 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    H. Ahn, J. W. Chia, H. M. Lee, et al., Appl. Phys. Lett., 102, 061904 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    A. Janotti, J. L. Lyons, et al., Phys. Status Solidi, A209, No. 1, 65 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    S.-K. Lee, H. S. Lim, J. H. Lee, et al., J. Appl. Phys., 111, 103115 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    W. Z. Liliental and M. E. Hawkridge, Phys. Status Solidi, C7, Nos. 7–8, 2025 (2010).ADSGoogle Scholar
  6. 6.
    P. A. Anderson, C. H. Swartz, et al., Appl. Phys. Lett., 89, 184104 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    R. E. Jones, K. M. Yu, S. X. Li, et al., Phys. Rev. Lett., 96, 125505 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    V. Yu. Davydov, A. A. Klochikhin, et al., Phys. Status Solidi, B229, R1 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    J. Wu, W. Walukiewicz, K. M. Yu, et al., Appl. Phys. Lett., 80, 3967 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    V. Yu. Davydov, A. A. Klochikhin, et al., Phys. Status Solidi, B230, R4 (2002).ADSCrossRefGoogle Scholar
  11. 11.
    Ph. Ebert, S. Schaafhausen, A. Lenz, et al., Appl. Phys. Lett., 98, 062103 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    J. Wu, W. Walukiewicz, W. Shan, et al., Appl. Phys. Lett., 94, 4457 (2003).Google Scholar
  13. 13.
    E. Baghani, S. K. O’Leary, et al., Appl. Phys. Lett., 99, 262106 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    N. Miller, E. E. Haller, et al., Phys. Rev., B84, 075315 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    N. A. Masyukov and A. V. Dmitrieva, J. Appl. Phys., 109, 023706 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    C. Rauch, F. Tuomisto, P. D. King, et al., Appl. Phys. Lett., 101, 011903 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    K. Wang, T. Katsuki, J. Sakaguchi, et al., in: Abstracts of Reports Presented at Int. Workshop on Nitride Semiconductors, Sapporo, Japan (2012), p. 479.Google Scholar
  18. 18.
    X. Wang, S. Liu, N. Ma, et al., in: Abstracts of Reports Presented at Int. Workshop on Nitride Semiconductors, Sapporo, Japan (2012), p. 372.Google Scholar
  19. 19.
    X. Wang, S. Liu, N. Ma, et al., Appl. Phys. Express, 5, 015502 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    L. Hsu, R. E. Jones, S. X. Li, et al., J. Appl. Phys., 102, 073705 (2007).ADSCrossRefGoogle Scholar
  21. 21.
    L. E. Ramos, J. Furthmculler, et al., Phys. Rev., B66, 075209 (2002).ADSCrossRefGoogle Scholar
  22. 22.
    X. M. Duan and C. Stampfl, Phys. Rev., B79, 035207 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    J. W. Ager and N. R. Miller, Phys. Status Solidi, A209, No. 1, 83 (2012).ADSCrossRefGoogle Scholar
  24. 24.
    A. Eisenhardt and M. Himmerlich, Phys. Status Solidi, A209, No. 1, 45 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    A. L. Yang, Y. Yamashita, H. Yoshikawa, et al., in: Abstracts of Reports Presented at Int. Workshop on Nitride Semiconductors, Sapporo, Japan (2012), p. 477.Google Scholar
  26. 26.
    E. Alarcon-Llado, K. Wang, T. Araki, et al., in: Abstracts of Reports Presented at Int. Workshop on Nitride Semiconductors, Sapporo, Japan (2012), p. 495.Google Scholar
  27. 27.
    T. A. Komissarova, V. N. Jmerik, et al., Phys. Rev., B84, 035205 (2011).ADSCrossRefGoogle Scholar
  28. 28.
    T. A. Komissarova, V. N. Jmerik, et al., Appl. Phys. Lett., 99, 072107 (2011).CrossRefGoogle Scholar
  29. 29.
    T. A. Komissarova, X. Wang, A. Yoshikawa, et al., in: Abstracts of Reports Presented at Int. Workshop on Nitride Semiconductors, Sapporo, Japan (2012), p. 372.Google Scholar
  30. 30.
    C.-T. Kuo, S.-C. Lin, et al., Appl. Phys. Lett., 98, 052101 (2011).ADSCrossRefGoogle Scholar
  31. 31.
    L. Guo, X. Wang, L. Feng, et al., Appl. Phys. Lett., 102, 072103 (2013).ADSCrossRefGoogle Scholar
  32. 32.
    C. Xia, Y. Jia, S. Wei, et al., Appl. Phys. Lett., 99, 203110 (2011).ADSCrossRefGoogle Scholar
  33. 33.
    H. Yıldırım and B. Aslan, J. Appl. Phys., 112, 053525 (2012).ADSCrossRefGoogle Scholar
  34. 34.
    V. Blant, T. S. Cheng, N. J. Jeffs, et al., Mater. Sci. Eng., B59, 218 (1999).CrossRefGoogle Scholar
  35. 35.
    S. Schoche, T. Hofmann, V. Darakchieva, et al., in: Abstracts of Reports Presented at Int. Workshop on Nitride Semiconductors, Sapporo, Japan (2012), p. 478.Google Scholar
  36. 36.
    X. Wang, S.-B. Che, Y. Ishitani, et al., Appl. Phys. Lett., 91, 242111 (2007).ADSCrossRefGoogle Scholar
  37. 37.
    P. D. C. King, T. D. Veal, P. H. Jefferson, et al., Phys. Rev., B75, 115312 (2007).ADSCrossRefGoogle Scholar
  38. 38.
    N. Khan, N. Nepal, A. Sedhain, et al., Appl. Phys. Lett., 91, 012101 (2007).ADSCrossRefGoogle Scholar
  39. 39.
    V. Yu. Davydov, A. Klochikhin, et al., Appl. Phys. Lett., 91, 111917 (2007).ADSCrossRefGoogle Scholar
  40. 40.
    X. Wang, S.-B. Che, Y. Ishitani, et al., Appl. Phys. Lett., 92, 132108 (2008).ADSCrossRefGoogle Scholar
  41. 41.
    R. Cusco, N. Domenech-Amador, et al., Abstracts of Reports Presented at Int. Workshop on Nitride Semiconductors, Sapporo, Japan (2012), p. 476.Google Scholar
  42. 42.
    K. Wang, N. Miller, R. Iwamoto, et al., Appl. Phys. Lett., 98, 042104 (2011).ADSCrossRefGoogle Scholar
  43. 43.
    M. E. Zvanut and W. R. Willoughby, J. Appl. Phys., 112, 086102 (2012).ADSCrossRefGoogle Scholar
  44. 44.
    N. Ma, X. Q. Wang, S. T. Liu, et al., Appl. Phys. Lett., 98, 192114 (2011).ADSCrossRefGoogle Scholar
  45. 45.
    S. T. Liu, X. Q. Wang, G. Chen, et al., J. Appl. Phys., 110, 113514 (2011).ADSCrossRefGoogle Scholar
  46. 46.
    Y.-E. Su, Y.-C. Wen, Y.-L. Hong, et al., Appl. Phys. Lett., 98, 252106 (2011).ADSCrossRefGoogle Scholar
  47. 47.
    M. A. Mayer, S. Choi, O. Bierwagen, et al., J. Appl. Phys., 110, 123707 (2011).ADSCrossRefGoogle Scholar
  48. 48.
    O. Bierwagen, S. Choi, J. S. Hall, et al., Phys. Rev., B85, 165205 (2012).ADSCrossRefGoogle Scholar
  49. 49.
    O. Bierwagen, S. Choi, and J. S. Speck, Phys. Rev., B84, 235302 (2011).ADSCrossRefGoogle Scholar
  50. 50.
    S. Choi, O. Bierwagen, J. S. S. Hall, et al., Abstracts of Reports Presented at Int. Workshop on Nitride Semiconductors, Sapporo, Japan (2012), p. 373.Google Scholar
  51. 51.
    A. Uedono, H. Nakamori, K. Narita, et al., J. Appl. Phys., 105, 054507 (2009).ADSCrossRefGoogle Scholar
  52. 52.
    L. H. Dmowski, M. Baj, T. Suski, et al., J. Appl. Phys., 105, 123713 (2009).ADSCrossRefGoogle Scholar
  53. 53.
    A. Yoshikawa, X. Wang, et al., Phys. Status Solidi, A207, No. 5, 1011 (2010).ADSCrossRefGoogle Scholar
  54. 54.
    S. Zhao and Z. Mi Z, in: Abstracts of Report Presented at Int. Workshop on Nitride Semiconductors, Sapporo, Japan (2012), p. 479.Google Scholar
  55. 55.
    E. Alarcon-Llado, M. A. Mayer, et al., Appl. Phys. Lett., 99, 102106 (2011).ADSCrossRefGoogle Scholar
  56. 56.
    C. A. Hurni, S. Choi, O. Bierwagen, et al., Appl. Phys. Lett., 100, 082106 (2012).ADSCrossRefGoogle Scholar
  57. 57.
    L. M. Amorim, U. Wahl, S. Dekoster, et al., in: Proc. 4th Int. Symp. on Growth of III-Nitrides, Saint Petersburg, (2012), p. 111.Google Scholar
  58. 58.
    Q. Y. Xie, W. M. Xie, J. L. Wang, et al., Appl. Phys. Lett., 102, 042109 (2013).ADSCrossRefGoogle Scholar
  59. 59.
    V. Lebedev, V. Cimalla, T. Baumann, et al., J. Appl. Phys., 100, 094903 (2006).ADSCrossRefGoogle Scholar
  60. 60.
    Y. Ishitani, M. Fujiwara, X. Wang, et al., Appl. Phys. Lett., 92, 251901 (2008).ADSCrossRefGoogle Scholar
  61. 61.
    E. Kalesaki, J. Kioseoglou, L. Lymperakis, et al., Appl. Phys. Lett., 98, 072103 (2011).ADSCrossRefGoogle Scholar
  62. 62.
    A. Armstrong, T. A. Henry, et al., Appl. Phys. Lett., 101, 162102 (2012).ADSCrossRefGoogle Scholar
  63. 63.
    J. Bruckbauer, P. R. Edwards, T. Wang, et al., Appl. Phys. Lett., 98, 141908 (2011).ADSCrossRefGoogle Scholar
  64. 64.
    L. F. J. Piper, T. D. Veal, and C. F. McConville, Appl. Phys. Lett., 88, 252109 (2006).ADSCrossRefGoogle Scholar
  65. 65.
    J. J. Bruckbauer, G. Naresh-Kumar, S.-L. Sahonta, et al., in: Abstracts of Reports Presented at Int. Workshop on Nitride Semiconductors, Sapporo, Japan (2012), p. 160.Google Scholar
  66. 66.
    Y. Zhao, F. Wu, and C.-Y. Huang, Appl. Phys. Lett., 102, 091905 (2013).ADSCrossRefGoogle Scholar
  67. 67.
    F. Reurings, C. Rauch, F. Tuomisto, et al., Phys. Rev., B82, 153202 (2010).ADSCrossRefGoogle Scholar
  68. 68.
    C. Rauch, F. Reurings, et al., Phys. Status Solidi, A207, No. 5, 1083 (2010).ADSCrossRefGoogle Scholar
  69. 69.
    C. Rauch, I. Makkonen, F. Tuomisto, et al., Phys. Rev., B84, 125201 (2011).ADSCrossRefGoogle Scholar
  70. 70.
    C. Rauch, I. Makkonen, et al., Phys. Status Solidi, A208, No. 7, 1548 (2011).CrossRefGoogle Scholar
  71. 71.
    C. Rauch, O. Tuna, C. Giesen, et al., Phys. Status Solidi, A209, No. 1, 87 (2012).ADSCrossRefGoogle Scholar
  72. 72.
    C. Rauch, F. Tuomisto, et al., Appl. Phys. Lett., 100, 091907 (2012).ADSCrossRefGoogle Scholar
  73. 73.
    A. Uedono, S. Ishibashi, T. Watanabe, et al., J. Appl. Phys., 112, 014507 (2012).ADSCrossRefGoogle Scholar
  74. 74.
    X. M. Duan and C. Stampf, Phys. Rev., B77, 115207 (2008).ADSCrossRefGoogle Scholar
  75. 75.
    X. M. Duan and C. Stampf, Phys. Rev., B79, 174202 (2009).ADSCrossRefGoogle Scholar
  76. 76.
    C. G. Van de Walle, J. L. Lyons, and A. Janotti, Phys. Status Solidi, A207, 1024 (2010).ADSCrossRefGoogle Scholar
  77. 77.
    A. Janottia, C. G. Van de Walle, et al., Appl. Phys. Lett., 92, 032104 (2008).ADSCrossRefGoogle Scholar
  78. 78.
    K. S. A. Butcher and P. P.-T. Chen, Appl. Phys. Lett., 100, 011913 (2012).ADSCrossRefGoogle Scholar
  79. 79.
    J. Pal, G. Tse, V. Haxha, et al., Phys. Rev., B84, 085211 (2011).ADSCrossRefGoogle Scholar
  80. 80.
    F. H. Mei, N. Tang, X. Q. Wang, et al., in: Abstracts of Reports Presented at Int. Workshop on Nitride Semiconductors, Sapporo, Japan (2012), p. 477.Google Scholar
  81. 81.
    A. Gauthier-Brun, J. H. Teng, et al., Appl. Phys. Lett., 100, 071913 (2012).ADSCrossRefGoogle Scholar
  82. 82.
    T. Inushima, in: Abstracts of Reports Presented at Int. Workshop on Nitride Semiconductors, Sapporo, Japan, (2012), p. 481.Google Scholar
  83. 83.
    D.-J. Jang, A. Mohanta, C.-F. Tseng, et al., in: Abstracts of Reports Presented at Int. Workshop on Nitride Semiconductors, Sapporo, Japan (2012), p. 480.Google Scholar
  84. 84.
    I. Gorczuca, T. Suski, N. E. Christensen, et al., Appl. Phys. Lett., 96, 101907 (2010).ADSCrossRefGoogle Scholar
  85. 85.
    M. Millot, Z. M. Geballe, K. M. Yu, et al., Appl. Phys. Lett., 100, 162103 (2012).ADSCrossRefGoogle Scholar
  86. 86.
    M. Goiran, M. Millot, J.-M. Poumirol, et al., Appl. Phys. Lett., 96, 052117 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • S. S. Khludkov
    • 1
  • I. A. Prudaev
    • 1
  • O. P. Tolbanov
    • 1
  1. 1.V. D. Kuznetsov Siberian Physical-Technical Institute at National Research Tomsk State UniversityTomskRussia

Personalised recommendations