Advertisement

Russian Physics Journal

, Volume 55, Issue 12, pp 1451–1457 | Cite as

Spall Fracture Patterns for the Heterophase Cu–Al–Ni Alloy in Ultrafine- and Coarse-Grained States Exposed to a Nanosecond Relativistic High-Current Electron Beam

  • E. F. Dudarev
  • A. B. Markov
  • A. E. Mayer
  • G. P. Bakach
  • A. N. Tabachenko
  • O. A. Kashin
  • G. P. Pochivalova
  • A. B. Skosyrskii
  • S. A. Kitsanov
  • M. F. Zhorovkov
  • E. V. Yakovlev
Article

A comparative study of spall fracture patterns for the heterophase Cu – 8.45% Al – 5.06% Ni alloy (аt.%) in ultrafine- and coarse-grained states under shock-wave loading using the “SINUS-7” electron accelerator is carried out. For electron energy of 1.4 MeV, pulse duration of 50 ns, and power density of 1.6·1010 W/cm2, the shock wave amplitude was 8 GPa and the strain rate was ~2·105 s–1. It is established that the thickness of the spalled layer increased for both grained structures, and the degree of plastic strain decreased with increasing target thickness. Based on experimental data obtained and results of theoretical calculations, it is demonstrated that the spall strength of ultrafine- and coarse-grained structures is ~3 GPa. The data on the grained structure at different distances from the spall surface and spall fraction patterns and mechanism are presented.

Keywords

heterophase alloy ultrafine-grained structure nanosecond electron beam shock wave spall fraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Z. Valiev and I. A. Aleksandrov, Bulk Nanostructured Metal Materials: Production, Structure, and Properties [in Russian], Akademkniga Publishing and Bookselling Center, Moscow (2007).Google Scholar
  2. 2.
    Yu. R. Kolobov, R. Z. Valiev, G. P. Grabovetskii, et al., Grain Boundary Diffusion and Properties of Nanostructured Materials [in Russian], Nauka, Novosibirsk (2001).Google Scholar
  3. 3.
    N. I. Noskova and P. P. Mulyukov, Submicrocrystalline and Nanocrystalline Metals and Alloys [in Russian], Publishing House of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg (2003).Google Scholar
  4. 4.
    G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock Wave Phenomena in Condensed Media [in Russian], Yanus-K, Moscow (1996).Google Scholar
  5. 5.
    T. Antoun, L. Seaman, D. R. Currant, et al., Spall Fracture, Springer Verlag, New York (2003).Google Scholar
  6. 6.
    G. I. Kanel, S. V. Razorenov, A. V. Utkin, et al., J. Appl. Phys., 90, No. 1, 136–143 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    K. Baumung, H. Bluhm, G. I. Kanel, et al., Int. J. Impact Eng., 25, 631–639 (2001).CrossRefGoogle Scholar
  8. 8.
    A. Ya. Uchaev, S. A. Novikov, V. A. Tsukerman, et al., Dokl. Akad. Nauk SSSR, 310, No. 1, 611–614 (1990).Google Scholar
  9. 9.
    A. B. Markov, S. A. Kitsanov, V. P. Rotshtein, et al., Russ. Phys. J., 49, No. 7, 758–765 (2006).CrossRefGoogle Scholar
  10. 10.
    E. F. Dudarev, A. B. Markov, A. N. Tabachenko, et al., Russ. Phys. J., 50, No. 12, 1205–1211 (2007).CrossRefGoogle Scholar
  11. 11.
    E. F. Dudarev, A. B. Markov, G. P. Bakach, et al., Russ. Phys. J., 52, No. 3, 239–244 (2009).CrossRefGoogle Scholar
  12. 12.
    E. F. Dudarev, O. A. Kashin, A. B. Markov, et al., Russ. Phys. J., 54, No. 6, 713–720 (2011).CrossRefGoogle Scholar
  13. 13.
    V. A. Skripnyak and E. G. Skripnyak, Fizich. Mesomekh., 7, Special Issue, Part 1, 297–300 (2004).Google Scholar
  14. 14.
    E. G. Skripnyak, V. A. Skripnyak, and S. V. Chakhlov, Fizich. Mesomekh., 7, Special Issue, Part 1, 301–304 (2004).Google Scholar
  15. 15.
    A. S. Savinykh, S. V. Razorenov, and G. I. Kannel, in: Abstracts of Reports Presented at the XVIth Int. Conf. “Strength Physics and Plasticity of Materials” [in Russian], Samara (2006), pp. 84–85.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • E. F. Dudarev
    • 1
  • A. B. Markov
    • 2
  • A. E. Mayer
    • 3
  • G. P. Bakach
    • 1
  • A. N. Tabachenko
    • 1
  • O. A. Kashin
    • 4
  • G. P. Pochivalova
    • 1
  • A. B. Skosyrskii
    • 1
  • S. A. Kitsanov
    • 2
  • M. F. Zhorovkov
    • 1
  • E. V. Yakovlev
    • 2
  1. 1.V. D. Kuznetsov Physical-Technical Institute at National Research Tomsk State UniversityTomskRussia
  2. 2.High-Current Electronics Institute of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  3. 3.Chelyabinsk State UniversityChelyabinskRussia
  4. 4.Institute for Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia

Personalised recommendations