Russian Physics Journal

, Volume 55, Issue 10, pp 1105–1110 | Cite as

The evolution of the grain boundary ensemble of polycrystalline nickel under creep at elevated temperatures

  • E. V. Naydenkin
  • K. V. Ivanov
Condensed-State Physics

The evolution of the grain boundary ensemble of polycrystalline nickel under creep at 823 K (~0.5 Тm) has been investigated by the electron backscattered diffraction technique. At low strains, delamination of twin grain boundaries Σ3 is found to take place, giving rise to coincidence site lattice grain boundaries Σ9 and Σ27. Low-angle misorientations in the material are shown to increase considerably with increase in the degree of strain, which causes a decrease in the fraction of the coincidence site lattice grain boundaries due to interaction with lattice dislocations.


nickel creep grain boundaries electron backscattered diffraction (EBSD) distribution of misorientations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. A. Kaibyshev and R. Z. Valiev, Grain Boundaries and Properties of Metals [in Russian], Metallurgiya, Moscow (1987).Google Scholar
  2. 2.
    I. Kaur, Y. Mishin, and W. Gust, Fundamentals of Grain and Interphase Boundary Diffusion, John Wiley & Sons Ltd., Chichester (1995).Google Scholar
  3. 3.
    M. A. Shtremel, Strength of Alloys, Part 1. Lattice Defects [in Russian], MISIS, Moscow (1999).Google Scholar
  4. 4.
    T. Watanabe, J. Mater. Sci. 46, 4095–4115 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    F. J. Humphreys, J. Mater. Sci., 36, 3833–3854 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    I. P. Mishin and G. P. Grabovetskaya, Russ. Phys. J., 55, No. 1, 92–98 (2012).CrossRefGoogle Scholar
  7. 7.
    D. A. Hughes and N. Hansen, Acta Mat., 48, 2985–3004 (2000).CrossRefGoogle Scholar
  8. 8.
    N. Narita and J.-I. Takamura, Dislocat. Solids, 9, 135–189 (1992).Google Scholar
  9. 9.
    Ch. V. Kopetskii, A. N. Orlov, and L. K. Fionova, Grain Boundaries in Pure Materials [in Russian], Nauka, Moscow (1987).Google Scholar
  10. 10.
    A. P. Zhilyaev and A. I. Pshenichnyuk, Superplasticity and Grain Boundaries in Ultrafine-Grained Materials [in Russian], Fizmatlit, Moscow (2998).Google Scholar
  11. 11.
    D. G. Brandon, B. Ralph, S. Ranganathan, and M. S. Wald, Acta Met., 12, No. 7, 813–821 (1964).CrossRefGoogle Scholar
  12. 12.
    D. McLean, Grain Boundaries in Metals, Clarendon Press, London (1957).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia

Personalised recommendations