Advertisement

Russian Physics Journal

, Volume 56, Issue 7, pp 785–790 | Cite as

Thermophoresis of Ultrafine and Nanosized Particles

  • M. A. Bubenchikov
  • A. I. Potekaev
  • A. M. Bubenchikov
Condensed-State Physics

It is shown that thermophoresis of ultrafine and nanosized particles can be calculated using an ideal gas model in a single-velocity Clausius approximation. An application of the classical approach allows determining the particle velocity and the force generated by the gas phase in the case where a temperature gradient is present in it. A good agreement with the available experimental data is obtained.

Keywords

nanoparticle ideal gas single-velocity approximation pattern of compensated action balance of kinetic momentum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Brin’, S. P. Fisenko, and A. I. Shnip, Zh. Tekh. Fiz., 78, Issue 9, 41–45 (2008).Google Scholar
  2. 2.
    S. P. Fisenko, and A. I. Shnip, Physics, Chemistry and Applications of Nanostructures (Eds. V. E. Gaponenko and V. S. Gurin), Singapore, World Scientific (2003).Google Scholar
  3. 3.
    S. P. Fisenko, Inzh. Fiz. Zh., 83, No. 1, 11–14 (2010).Google Scholar
  4. 4.
    A. G. Bashkirov, J. Theor. Math. Phys., 49, No. 1, 149–144 (1981).MathSciNetGoogle Scholar
  5. 5.
    V. Ya. Rudyak and S.L. Krasnolutskii, Zh. Tekh. Fiz., 80, Issue 8, 49–52 (2010).Google Scholar
  6. 6.
    S. P. Fisenko and Yu. A. Khodyko, Zh. Tekh. Fiz., 82, Issue 3, 23–29 (2012).Google Scholar
  7. 7.
    Z. R. Gorbis and F. E. Spokoinyi, Teplofiz. Vysok. Temper., 15, No. 2, 399– 408 (1977).ADSGoogle Scholar
  8. 8.
    Yu. V. Valtsyferov and S. M. Muradyan, Teplofiz. Vysok. Temper., 22, No. 6, 1152–1157 (1977).Google Scholar
  9. 9.
    S. P. Bakanov, Usp. Fiz. Nauk, 162, No. 9, 133–152 (1992).CrossRefGoogle Scholar
  10. 10.
    V. P. Redchits and Yu. I. Yalamov [in Russian], Bull. Moscow Region State University. Ser. Physics – Mathematics, No. 1, 3–8 (2008).Google Scholar
  11. 11.
    S. P. Bakanov, J. Appl. Math. Mechanics, 69, No. 5, 855–860 (2005).MathSciNetMATHGoogle Scholar
  12. 12.
    L. Talbot, R. K. Cheng, R. W. Schefer, and D. R. Willis, J. Fluid Mechan., 101, No. 4, 737–758 (1980).ADSCrossRefGoogle Scholar
  13. 13.
    A. I. Potekaev, A. M. Bubenchikov, and M. A. Bubenchikov, Russ. Phys. J., 55, No. 12, 341–348 (2012).MathSciNetGoogle Scholar
  14. 14.
    E. A. Chernova, A. E. Turetskii, G. N. Lipatov, and N. Kh. Kopyt, Physics of Airdispersed Systems: Interdepartmental collected works [in Russian], Odessa, The I. I. Mechnikov Odessa National University (2009).Google Scholar
  15. 15.
    F. Prodi and G. Santacihara, J. Aerosol Sci., 10, No. 4, 421–425 (1979).CrossRefGoogle Scholar
  16. 16.
    A. I. Storozhilova and G. I. Scherbina, Dokl. Akad. Nauk USSR, 217, No. 2, 386–389 (1974).Google Scholar
  17. 17.
    L. Waldmann, Rarefied Gas Dynamics (Ed. L. Talbot), N. Y., Academic Press (1961).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. A. Bubenchikov
    • 1
  • A. I. Potekaev
    • 2
  • A. M. Bubenchikov
    • 1
  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.V. D. Kuznetsov Siberian Physical-Technical Institute at National Research Tomsk State UniversityTomskRussia

Personalised recommendations