Advertisement

Russian Physics Journal

, Volume 56, Issue 6, pp 681–685 | Cite as

Investigation of the process of ferrite formation in the Li2CO3–ZnO–Fe2O3 system under high-energy actions

  • A. P. Surzhikov
  • E. N. Lysenko
  • V. A. Vlasov
  • A. V. Malyshev
  • E. V. Nikolaev
Article

Results of synthesis of lithium-zinc ferrites under high-energy actions including mechanical activation of the mixture of initial reagents in a planetary mill and heating of reaction mixtures upon exposure to accelerated high-energy electron beams are presented. The initial structure of the reaction mixtures corresponds to the stoichiometric spinel formula: Li0.5(1–x)Zn x Fe2.5–0.5x О4, where х = 0.2. To elucidate the effect of radiation on kinetic transformations of the phase composition, analogous investigations are performed with thermal annealing in a furnace. It is established that mechanical activation and radiation-thermal heating of the Li2CO3–ZnO–Fe2O3 mixture of initial reagents increases significantly the reactivity of solid phase systems thereby decreasing strongly the temperature of synthesis and improving the homogeneity of the end product. To synthesize Li0.4Fe2.4Zn0.2O4 lithium-zinc ferrospinels with homogeneous composition, it is suffice to provide a synthesis temperature of 600°С with holding time of 60 min under complex high-energy action including mechanical activation of the initial mixture of reagents and heating upon exposure to a high-energy beam of electrons.

Keywords

lithium-zinc ferrite solid-state synthesis electron beam radiation-thermal heating mechanical activation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Berbennia, A. Marinia, P. Matteazzib, et al., J. Eur. Ceram. Soc., 23, 527–536 (2003).CrossRefGoogle Scholar
  2. 2.
    V. V. Zyryanov, Usp. Khim., 77, No. 2, 107–136 (2008).CrossRefGoogle Scholar
  3. 3.
    A. P. Surzhikov, E. N. Lysenko, A. V. Malyshev, et al., Russ. Phys. J., 55, No. 6, 672–677 (2012).CrossRefGoogle Scholar
  4. 4.
    A. P. Surzhikov and A. M. Pritulov, Radiation and Thermal Processes in Powder Materials [in Russian], Energoatomizdat, Moscow (2008).Google Scholar
  5. 5.
    A. P. Surzhikov, A. M. Pritulov, E. N. Lysenko, et al., J. Therm. Anal. Calorim., 101, 11–13 (2010).CrossRefGoogle Scholar
  6. 6.
    E. A. Vasendina, E. N. Lysenko, V. A. Vlasov, et al., Tekh. Tekhnol. Silik., No. 4, 6–11 (2011).Google Scholar
  7. 7.
    A. P. Surzhikov, E. N. Lysenko, V. A. Vlasov, et al., J. Therm. Anal. Calorim., 110, Nо. 2, 733−738 (2012).CrossRefGoogle Scholar
  8. 8.
    P. D. Baba, G. M. Argentina, W. E. Courtney, et al., IEEE Trans. Magn., 8, 83–94 (1972).ADSCrossRefGoogle Scholar
  9. 9.
    V. M. Bereznyak, A. R. Potkin, and E. G. Avvakumov, Centrifugal mill, RF Patent No. 1584203, Bull. No. 5 (1996).Google Scholar
  10. 10.
    V. L. Auslender, A. A. Bryazgin, L. A. Voronin, et al., Nauka – Proizv., No. 7, 11–17 (2003).Google Scholar
  11. 11.
    B. E. Levin, Yu. D. Tret’yakov, and L. M. Letyuk, Physical and Chemical Principles of Synthesis, Properties, and Application of Ferrites [in Russian], Metallurgiya, Moscow (1979).Google Scholar
  12. 12.
    P. K. Gallagher, J. Therm. Anal. Calorim., 49, 33–44 (1997).CrossRefGoogle Scholar
  13. 13.
    A. P. Surzhikov, E. N. Lysenko, A. V. Malyshev, et al., J. Therm. Anal. Calorim., 112, 739–745 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. P. Surzhikov
    • 1
  • E. N. Lysenko
    • 1
  • V. A. Vlasov
    • 1
  • A. V. Malyshev
    • 1
  • E. V. Nikolaev
    • 1
  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations