Advertisement

Russian Physics Journal

, Volume 56, Issue 6, pp 630–637 | Cite as

High-Temperature Plastic Deformation and Acoustic Emission of Aluminum in a Low-Stability State

  • S. V. Makarov
  • V. A. Plotnikov
  • A. I. Potekaev
Article

It is found out that under conditions of high-temperature mechanical loading of aluminum in a low-stability state, deformation is manifested as discrete macroscopic changes. An analysis of the activation energy of the temperature-dependent deformation and acoustic emission demonstrates that the period of deformation buildup is accompanied by the diffusion-controlled processes, giving rise to a stepwise accumulation of deformation and quasi-periodic transmission of high-amplitude acoustic-emission signals. The activation volume of an elementary deformation event is increasing exponentially with temperature, indicating an increased scale level of cooperative atomic displacements and formation of a local low-stability state or crystal-lattice instability. The macroscopic manifestation of the sharp deformation change (jump) serves as an evidence of correlation between the elementary events of deformation.

Keywords

condensed state of matter low-stability state structure deformation structural rearrangement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Nakanishi, in: Shape Memory Effects in Alloys (Ed. J. Perkins), Plenum Press, New York (1975).Google Scholar
  2. 2.
    K. Mukherjee, M. Chandrasekaran, and F. Milillo, in: Shape Memory Effects in Alloys (Ed. J. Perkins), Plenum Press, New York (1975).Google Scholar
  3. 3.
    S. V. Makarov, V. A. Plotnikov, and A. I. Potekaev, Russ. Phys. J., 54, No. 3, 47–54 (2011).CrossRefGoogle Scholar
  4. 4.
    V. P. Regel, A. I. Slutzker, and E E. Tomashevskii, Kinetic Nature of Strength of Solids [in Russian], Moscow, Nauka (1974).Google Scholar
  5. 5.
    A. I. Slutzker, A. I. Mikhailin, and I. A. Slutzker, Usp. Fiz. Nauk, 164, No. 4, 357–366 (1994).CrossRefGoogle Scholar
  6. 6.
    A. I. Potekaev and V. V. Kulagina, Russ. Phys. J., 54, No. 8, 839–854 (2011).CrossRefGoogle Scholar
  7. 7.
    Yu. A. Baimova, S. V. Dmitiev, A. I. Potekaev, et al., Russ. Phys. J., 53, No. 3, 213–224 (2010).CrossRefGoogle Scholar
  8. 8.
    S. V. Dmitriev, A. V. Samsonov, and A. I. Potekaev, Russ. Phys. J., 52, No. 6, 622–639 (2009).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    S. V. Dmitriev, A. A. Nazarov, A. I. Potekaev, et al., Russ. Phys. J., 52, No. 2, 132–137 (2009).CrossRefGoogle Scholar
  10. 10.
    S. V. Dmitriev, N. N. Medvedev, A. I. Potekaev, et al., Russ. Phys. J., 51, No. 8, 858–869 (2008).CrossRefGoogle Scholar
  11. 11.
    A. I. Potekaev, S. V. Dmitriev, V. V. Kulagina, et al., Low-Stability Long-Period Structures in Metallic Systems [in Russian], Tomsk, NTL Publ. (2010).Google Scholar
  12. 12.
    G. M. Poletaev and M. D. Starostenkov, Physics of the Solid State, 51, No. 4, 727–732 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    M. M. Aksenov, G. M. Poletaev, R. Yu. Rakitin, and M. D. Starostenkov, Fund. Probl. Sovr. Materialoved., No. 2, 64–67 (2005).Google Scholar
  14. 14.
    A. I. Slutzker, Physics of the Solid State, 46, No. 9, 1658–1666 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    M. M. Myshlyaev, Crystal Structure Imperfections and Martensitic Transformations [in Russian], Moscow, Nauka (1972).Google Scholar
  16. 16.
    V. V. Rybin, Large Plastic Deformations and Metal Fracture [in Russian], Moscow, Metallurgiya (1986).Google Scholar
  17. 17.
    L. B. Zuev, V. I. Danilov, and V. V. Gorbatenko, Zh. Teor. Fiz., 65, No. 5, 91–103 (1995).Google Scholar
  18. 18.
    G. A. Malygin, Usp. Fiz. Nauk, 169, No. 9, 979–1010 (1999).CrossRefGoogle Scholar
  19. 19.
    V. E. Panin, V. A. Likhachev, and Yu. V. Grinyaev, Structural Levels of Deformation of Solids [in Russian], Novosibirsk, Nauka (1985).Google Scholar
  20. 20.
    V. N. Bovenko, Izv. Akadem. SSSR. Metally, No. 1, 129–137 (1984).Google Scholar
  21. 21.
    V. A. Plotnikov, and S. V. Makarov, Russ. Phys. J., 48, No. 11, 1142–1147 (2005).CrossRefGoogle Scholar
  22. 22.
    V. A. Plotnikov, and S. V. Makarov, Deform. Razrushen. Metal., No. 3, 27–31 (2005).Google Scholar
  23. 23.
    J.- P. Poirier, Creep of Crystals. High-Temperature Deformation Processes in Metals, Ceramics and Minerals (1988).Google Scholar
  24. 24.
    G. A. Malygin, The Physics of Metals and Metallography, 34, No. 1, 191–199 (1972).Google Scholar
  25. 25.
    H. Conrad, in: Mechanical Behavior of Materials at Elevated Temperatures, McGraw Hill Book Co., Inc., N.Y. (1961).Google Scholar
  26. 26.
    M. Yu. Gudkin, I. A. Ovidko, and N. V. Skiba, The Physics of Metals and Metallography, 47, No. 9, 1602–1613 (2005).Google Scholar
  27. 27.
    A. I. Slutzker, The Physics of Metals and Metallography, 47, No. 5, 777–787 (2005).Google Scholar
  28. 28.
    V. M. Rozenberg, Creep of Metals [in Russian], Moscow, Metallurgiya (1967).Google Scholar
  29. 29.
    M. A. Lebedkin and L. R. Dunin-Barkovskii, Zh. Eksp. Teor. Fiz., 113, No. 5, 1816–1829 (1998).Google Scholar
  30. 30.
    V. N. Bovenko, Izv. Akad. Nauk. Ser. Fizich., 50, No. 3, 509–512 (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • S. V. Makarov
    • 1
  • V. A. Plotnikov
    • 1
  • A. I. Potekaev
    • 2
    • 3
  1. 1.Altai State UniversityBarnaulRussia
  2. 2.V. D. Kuznetsov Siberian Physical-Technical Institute of the National Research Tomsk State UniversityTomskRussia
  3. 3.National Research Tomsk State UniversityTomskRussia

Personalised recommendations