Advertisement

Russian Physics Journal

, Volume 56, Issue 5, pp 592–598 | Cite as

Physics of semiconductors and dielectrics optical properties and radiation stability of coatings based on BaTiO3 powders modified by ZrO2 micron size powders of different concentrations

  • M. M. Mikhailov
  • T. A. Utebekov
  • S. A. Yur’ev
PHYSICS OF SEMICONDUCTORS AND DIELECTRICS

Diffuse reflection spectra in the wavelength range 350–2100 nm and radiation stability of coatings based on BaTiO3 powders modified by ZrO2 micron size powders of different concentrations are investigated. The presence of two wavelength ranges characterized by significant influence of modification on defects of the anion sublattice and its weak influence on defects of the cation sublattice of barium titanate is experimentally established.

Keywords

barium titanates zirconium dioxide modification irradiation reflection spectra absorption bands 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Yaffe, U. Cook, and G. Yaffe, Piezoelectric Ceramics [Russian translation], Mir, Moscow (1974).Google Scholar
  2. 2.
    O. Saburi, Barium Titanate Based Semiconductors [Russian translation], Energoizdat, Moscow (1982).Google Scholar
  3. 3.
    F. Jonna and D. Shirane, Ferroelectric Crystals [Russian translation], Mir, Moscow (1965).Google Scholar
  4. 4.
    B. A. Strukov and A. P. Levanyuk, Physical Principles of Ferroelectric Phenomena in Crystals [in Russian], Nauka, Moscow (1995).Google Scholar
  5. 5.
    Ho Chyan and Fu Shen-Li, J. Mater. Sci., 25, 4699–4703 (1999).ADSCrossRefGoogle Scholar
  6. 6.
    Li Bo, Zhang Shuren, and Zhou Xiaohua, J. Mater. Sci., 42, 2090–2096 (2007).Google Scholar
  7. 7.
    Yuan Ying, Zhang Shuren, and Li Changmin, J. Mater. Sci. Mater. Electron, 15, 601–606 (2004).Google Scholar
  8. 8.
    M. M. Mikhailov, Russ. Phys. J., 52, No. 2, 216–217 (2009).CrossRefGoogle Scholar
  9. 9.
    M. M. Mikhailov and A. N. Lapin, Russ. Phys. J., 53, No. 11, 1131–1139 (2011).CrossRefGoogle Scholar
  10. 10.
    M. M. Mikhailov and T. A. Utebekov, Neorg. Mater., 48, No. 11, 1252–1258 (2012).CrossRefGoogle Scholar
  11. 11.
    M. M. Mikhailov, T. A. Utebekov, A. N. Sokolovskii, and V. A. Vlasov, Russ. Phys. J., 54, No. 10, 1167–1169 (2012).CrossRefGoogle Scholar
  12. 12.
    M. M. Mikhailov, T. A. Utebekov, A. N. Sokolovskii, and V. A. Vlasov, Russ. Phys. J., 54, No. 8, 98–100 (2011).Google Scholar
  13. 13.
    L. G. Kositsyn, M. M. Mikhailov, N. Ya. Kuznetsov, et al., Prib. Tekh. Eksp., No. 4, 176–180 (1985).Google Scholar
  14. 14.
    G. Mie, Ann. Phys., 25, 337–445 (1908).Google Scholar
  15. 15.
    G. V. Rosenberg, Usp. Fiz. Nauk, 91, No. 4, 569–608 (1967).Google Scholar
  16. 16.
    K. V. Shalimova, Physics of Semiconductors [in Russian], Energiya, Moscow (1976).Google Scholar
  17. 17.
    M. M. Mikhailov and M. I. Dvoretskii, Sov. Phys. J., 31, No. 7, 591–594 (1988).CrossRefGoogle Scholar
  18. 18.
    M. Blanco and I. Villaroya, TrAC Trends Analyt. Chem., No. 21, 240–250 (2002).Google Scholar
  19. 19.
    J. B. L. Martins, E. Longo, O. D. R. Salmon, et al., Chem. Phys. Lett., No. 40, 481–486 (2004).Google Scholar
  20. 20.
    M. M. Mikhailov, V. V. Neshchimenko, Li Chundong, et al., J. Mater. Res., 24, No. 1, 19–23 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    M. M. Mikhailov and V. V. Neshchimenko, Poverkhn. Rentgen., Sinkhr. Neitronn. Issled., No. 8, 43–48 (2009).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. M. Mikhailov
    • 1
  • T. A. Utebekov
    • 1
  • S. A. Yur’ev
    • 1
  1. 1.Tomsk State University of Control Systems and RadioelectronicsTomskRussia

Personalised recommendations