Advertisement

Russian Physics Journal

, Volume 56, Issue 4, pp 398–404 | Cite as

Characteristics of thunderstorm cores from observations in Yakutia

  • V. I. Kozlov
  • V. A. Mullayarov
  • S. N. Shabaganova
Article
  • 50 Downloads

Characteristics of thunderstorm cores, obtained from observations in Central and South Yakutia with the help of three one-point thunderstorm detectors with a radius of action of 300 km, located at Yakutsk, Mirnyi, and Neryungri, are presented. As a result of processing performed using two-step cluster analysis, the main parameters of thunderstorm cores have been obtained: number of discharges, area, intensity, transverse and longitudinal dimensions, shape, and lifetime. The distribution over occurrences of areas of cells has an exponentially falling form. It is shown that with increase of the mean area of an individual core S co in a thunderstorm, the area occupied by this thunderstorm S th grows exponentially, but with increase of the area of cores the density of discharges in them falls, and this dependence can be written in exponential form. The percent distribution of thunderstorms over density of discharges can be described by a falling power-law function.

Keywords

thunderstorm core cell lightning discharge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Instruction for a Lightning Protection Device for Buildings, Structures, and Industrial Communications [in Russian] (SO 153-34.21.122-2003).Google Scholar
  2. 2.
    E. A. Mareev and V. N. Stasenko, Izv. Ross. Acad. Nauk, Fiz. Atm. Okeana, 45, No. 5, 709–720 (2009).Google Scholar
  3. 3.
    I. I. Kononov and I. E. Yusupov, Radiotekh. Elektron., 49, No. 3, 283–291 (2004).Google Scholar
  4. 4.
    L. T. Matveev, Cloud Dynamics [in Russian], Gidrometeoizdat, Leningrad (1981).Google Scholar
  5. 5.
    M. H. Mogil, in: Extreme Weather, Black Dog & Leventhal Publishers, New York (2007), pp. 210–211.Google Scholar
  6. 6.
    S. N. Shabaganova and V. I. Kozlov, Dinam. Slozhn. Sist., 4, No. 2, 43–47 (2010).Google Scholar
  7. 7.
    V. I. Kozlov, V. A. Mullayarov, and R. R. Karimov, Sovrem. Probl. Dist. Zond. Zemli iz Kosmosa, 8, No. 3, 257–262 (2011).Google Scholar
  8. 8.
    V. I. Kozlov, V. A. Mullayarov, and A. E. Vasil’ev, Meteorol. Gidrol., No. 2, 3–25 (2003).Google Scholar
  9. 9.
    M. S. Aleksandrov, Usp. Sovrem. Radioelektron., No. 10, 3–25 (1998).Google Scholar
  10. 10.
    T. V. Lobodin and L. V. Oguryaeva, Trudy Gosud. Geofiz. Observ., Atm. Elektr., No. 350, 74–79 (1977).Google Scholar
  11. 11.
    A. A. Dul’zon and V. P. Gorbatenko, Izv. Tomsk. Politekh. Univ., 309, No. 2, 126–130 (2006).Google Scholar
  12. 12.
    I. I. Kononov and I. E. Yusupov, J. Commun. Technol. Electron., 49, No. 3, 1–9 (2004).Google Scholar
  13. 13.
    T. Rigo, N. Pineda, and J. Bech, Nat. Hazards Earth Syst. Sci., No. 10, 1881–1893 (2010).Google Scholar
  14. 14.
    T. V. Ershova and V. P. Gorbatenko, Vestn. Tomsk. Gosud. Pedagog. Univ., No. 5 (107), 150–154 (2011).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • V. I. Kozlov
    • 1
  • V. A. Mullayarov
    • 1
  • S. N. Shabaganova
    • 1
  1. 1.Yu. G. Shafer Institute of Space Research and Aeronomy of the Siberian Branch of the Russian Academy of SciencesYakutskRussia

Personalised recommendations