Advertisement

Russian Physics Journal

, Volume 56, Issue 4, pp 365–369 | Cite as

Processes proceeding in high-energy systems comprising nanodimensional aluminum and other nanometals

  • V. F. Komarov
  • M. V. Komarova
  • A. B. Vorozhtsov
  • M. I. Lerner
  • V. V. Domashenko
Condensed-state Physics

Results of experimental investigations of nanodimensional titanium (Ti), aluminum (Al), nickel (Ni), iron (Fe), zinc (Zn), and copper (Cu) powder interaction in high-energy condensed systems (HECSs) comprising a tetrazole polymer solution in nitroethers are presented. The main structural changes in such HECSs during their production and implementation are demonstrated. It is demonstrated that structural transformations are due to electrochemical reactions in the composites. The probability of forming intermetallic compounds in the high-energy systems comprising nanoaluminum and others nanometals is discussed together with the influence of intermetallides on the combustion and detonation.

Keywords

nanodimensional metal powders high-energy condensed systems intermetallides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. T. Luka, L. Glaffeti, F. Severini, et al., Fiz. Goreniya Vzryva, 41, No. 6, 80–94 (2005).Google Scholar
  2. 2.
    V. A. Arkhipov, A. G. Korotkikh, V. T. Kuznetsov, and A. A. Razdobrev, Izv. Vyssh. Uchebn. Zaved., Fiz., 51, No. 8/2, 5–10 (2008).Google Scholar
  3. 3.
    T. I. Gorbenko, M. V. Gorbenko, E. A. Kozlov, et al., Izv. Vyssh. Uchebn. Zaved. Fiz., Suppl., 49, No. 6, 49–51 (2006).Google Scholar
  4. 4.
    J. Zhi, L. Shu-Fen, and Z. Feng-Oi, Propellants, Explosives, Pyrotechnics, 31, No. 2, 139–147 (2006).CrossRefGoogle Scholar
  5. 5.
    V. F. Komarov, G. V. Sakovich, A. B. Vorozhtsov, et al., Boeprip. Vysokoenerg. Kondens. Sist., No. 2, 106–109 (2009).Google Scholar
  6. 6.
    M. V. Komarova, V. F. Komarov, A. G. Vakutin, and A. V. Yashchenko, Polzunovsk. Vestn., No. 4–1, 112–116 (2010).Google Scholar
  7. 7.
    V. V. An, N. A. Yavorskii, V. A. Arkhipov, et al., in: Proc. IX Int. Sci. Conf. “Chemistry of Solids: Single Crystals, Nanomaterials, Nanotechnologies,” Kislovodsk; Stavropol (2009), pp. 4–27.Google Scholar
  8. 8.
    Aluminum alloys. Physical Metallurgy of Aluminum and Its Alloys: A Handbook [in Russian], Metallurgiya, Moscow (1971).Google Scholar
  9. 9.
    L. F. Mondolfo, Aluminum Alloys: Structure and Properties [Russian translation], Metallurgiya, Moscow (1979).Google Scholar
  10. 10.
    M. V. Komarova, V. F. Komarov, and A. B. Vorozhtsov, Russ. Phys. J., 54, No. 12, 1418–1422 (2011).CrossRefGoogle Scholar
  11. 11.
    M. V. Komarova and V. F. Komarov, in: Proc. All-Russian Scientific-Technical Conf. “Advances in Special Chemistry and Chemical Technology,” Moscow (2010), pp. 260–264.Google Scholar
  12. 12.
    G. V. Samsonov, ed., Properties of Elements: A Handbook [in Russian], Metallurgizdat, Moscow (1976).Google Scholar
  13. 13.
    D. A. Yagodnikov, E. A. Andreev, V. S. Vorob’ev, and O. G. Glotov, Fiz. Goreniya Vzryva, 42, No. 5, 46–55 (2006).Google Scholar
  14. 14.
    A. P. Il’in, O. B. Nazarenko, D. V. Tikhonov, and G. V. Yablunovskii, Izv. Tomsk. Politekh. Univ., 308, No. 4, 71–74 (2005).Google Scholar
  15. 15.
    A. A. Gromov, T. A. Khabas, A. P. Il’in, et al., Combustion of Metal Powders [in Russian], Del’taplan, Tomsk (2008).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • V. F. Komarov
    • 1
  • M. V. Komarova
    • 1
  • A. B. Vorozhtsov
    • 1
  • M. I. Lerner
    • 2
  • V. V. Domashenko
    • 2
  1. 1.Institute for Problems of Chemical & Energetic Technologies of the Siberian Branch of the Russian Academy of SciencesBiiskRussia
  2. 2.Institute for Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia

Personalised recommendations