Advertisement

Russian Physics Journal

, Volume 56, Issue 3, pp 313–318 | Cite as

The effect of low-temperature annealing on the electrical properties of the p-type cadmium–mercury–tellurium heterostructures grown by molecular beam epitaxy

  • D. Yu. Protasov
  • А. R. Novoselov
  • D. V. Kombarov
  • V. Ya. Kostyuchenko
  • А. Е. Dolbak
  • N. N. Мikhailov
  • S. А. Dvoretskii
Physics of Semiconductors and Dielectrics
  • 36 Downloads

Annealing of the p-type CMT samples at temperatures 90–120°C results in a sharp increase (by two to three orders of magnitude) in the concentration of holes. In the case where the sample surfaces were not protected with a photoresist before annealing, they contacted with aqueous solutions. During annealing, these samples were fixed with indium having an ohmic contact with CMT. The presence of indium on the sample surfaces led to the gradient of Hg and Cd elements in the near-surface region under annealing. No chemical elements acting usually as acceptors in CMT were observed in these samples by Auger spectroscopy. Hydrogen is likely to be an acceptor causing an increase of hole concentration.

Keywords

cadmium–mercury–tellurium low-temperature annealing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Rogal’skii, Infrared Detectors [in Russian], Nauka, Novosibirsk, 2003.Google Scholar
  2. 2.
    L. A. Bovina, V. I. Stafeev, and K. O. Boltar’, Prikladn. Fiz., No. 3, 37 (1999).Google Scholar
  3. 3.
    V. Fisher, Zarubezhn. Radioelectron., 11, 3 (1982).Google Scholar
  4. 4.
    V. V. Vasil’ev, V. N. Ovsyuk, D. Yu. Protasov, and N. Kh. Talipov, Prikladn. Fiz., No. 2, 37 (2005).Google Scholar
  5. 5.
    A. R. Novoselov, A. V. Predein, I. G. Kosulina, and V. V. Vasil’ev, Prikladn. Fiz., No. 1, 73 (2010)Google Scholar
  6. 6.
    A. V. Vishnyakov, V. S. Varavin, M. O. Garifullin, et al., Avtometr., 40, No. 4, 32 (2009).Google Scholar
  7. 7.
    A. R. Novoselov and I. G. Kosulina, Avtometr., No. 6, 21 (2012).Google Scholar
  8. 8.
    I. M. Nesmelova, V. N. Ryzhkov, V. A. Andreev, et al., Prikladn. Fiz., No. 6, 125 (2005).Google Scholar
  9. 9.
    Yu. G. Sidorov, S. A. Dvoretskii, V. S. Varavin, and N. N. Mikhailov, Nauka Tekhnolog. v Promyshlen., 1, 39 (2010).Google Scholar
  10. 10.
    D. Yu. Protasov and V. Ya. Kostyuchenko, Vestnik NSU, Ser. Fiz., 6, No. 1, 104 (2011).Google Scholar
  11. 11.
    W. A. Beck and J. R. Anderson, J. Appl. Phys., 62, 541 (1987).ADSCrossRefGoogle Scholar
  12. 12.
    V. S. Varavin, G. Yu. Sidorov, and Yu. G. Sidorov, Zh. Fiz. Khim., 84, 1 (2010).Google Scholar
  13. 13.
    K. D. Mynbaev and V. I. Ivanov-Оmskii, Fiz. Tekhn. Poluprovodn., 40, No. 1, 3 (2006).Google Scholar
  14. 14.
    V. S. Varavin, G. Yu. Sidorov, M. O. Garifullin, et al., Fiz. Tekhn. Poluprovodn., 45, No. 3, 408 (2011).Google Scholar
  15. 15.
    W. C. Hughes, M. L. Swanson, and J. C. Austin, J. Electr. Mater., 22, No. 8, 1011 (1993).ADSCrossRefGoogle Scholar
  16. 16.
    K. Hossain, O. W. Holland, R. Hellmer, et al., J. Electr. Mater., 39, No. 7, 930 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    A. V. Panin and N. A. Torkhov, Fiz. Tekhn. Poluprovodn., 34, No. 6, 698 (2000).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • D. Yu. Protasov
    • 1
    • 2
  • А. R. Novoselov
    • 1
    • 2
  • D. V. Kombarov
    • 1
    • 2
  • V. Ya. Kostyuchenko
    • 1
    • 2
  • А. Е. Dolbak
    • 1
    • 2
  • N. N. Мikhailov
    • 1
    • 2
  • S. А. Dvoretskii
    • 1
    • 2
  1. 1.A. V. Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Siberian State Academy of GeodesyNovosibirskRussia

Personalised recommendations