Russian Physics Journal

, Volume 56, Issue 3, pp 241–250 | Cite as

Aerospace laser sensing of cloudiness: numerical statistical modeling

  • A. B. Kargin
  • B. A. Kargin
  • M. V. Lavrov
Optics and Spectroscopy

In the numerical modeling of laser radiation transfer in optically dense cloudy media it is necessary to take into account multiple scattering effects, which alter the spatiotemporal structure of light pulses. The Monte Carlo method makes it possible to achieve the most complete account of these effects in the solution of direct problems of laser sensing of scattering media. This work considers two problems. The first is connected with construction of an adequate optical model of crystalline clouds which takes account their optical anisotropy. The second touches on questions of Monte Carlo modeling of laser radiation transfer in optically anisotropic media. A number of results of numerical experiments are presented which establish a quantitative connection between some cloud parameters and the magnitude and shape of the time convolution of a non-stationary laser return signal reflected by a single-layer continuous crystalline or liquid-droplet cloud and by two-level continuous cloudiness, when the crystalline cloud is located above the liquid-droplet cloud.


laser sensing crystalline clouds liquid-droplet clouds optical anisotropy transfer equation Monte Carlo method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. E. Penner and V. S. Shamanaev, Opt. Atmos. Okeana, 12, No. 12, 1146–1151 (1999).Google Scholar
  2. 2.
    I. E. Penner, G. P. Kokhanenko, and V. S. Shamanaev, Opt. Atmos. Okeana, 13, No. 4, 379–385 (2000).Google Scholar
  3. 3.
    Yu. S. Balin, S. V. Samoilova, and I. E. Penner, Opt. Atmos. Okeana, 20, No. 9, 837–843 (2007).Google Scholar
  4. 4.
    E. M. Feigel’son, ed., Radiation in a Cloudy Atmosphere [in Russian], Gidrometeoizdat, Leningrad (1981).Google Scholar
  5. 5.
    D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions, Elsevier, New York (1969).Google Scholar
  6. 6.
    L. Elterman, UV, Visible, and IR Attenuation for Altitudes to 50 km, Air Force Cambridge Research Laboratory Report AFCRL-68-0153 (1968).Google Scholar
  7. 7.
    R. E. McClatchey, H. J. Bolle, and K. Ya. Kondratiev, Report of the IAMAP R.C.W.G. on a Standard Atmosphere, WMO/IAMAP (1980).Google Scholar
  8. 8.
    K. Ya. Kondrat’ev, ed., On the Effect of Aerosol on Radiative Transfer: Possible Climatic Consequences [in Russian], Publishing House of Leningrad University, Leningrad (1973).Google Scholar
  9. 9.
    A. Macke, M. Mishchenko, and B. Cairns, J. Geophys. Res. D101, No. 18, 23311–23316 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    M. I. Mishchenko, J. W. Hovenier, and I. D. Travis, Light Scattering by Nonspherical Particles. Theory, Measurements and Applications, Academic Press, San Diego (2000).Google Scholar
  11. 11.
    G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, et al., The Monte Carlo Methods in Atmospheric Optics, Springer-Verlag, New York (1980).Google Scholar
  12. 12.
    H. Goldstein, C. Poole, and J. Safko, Classical Mechanics, Addison Wesley, Reading (1980).Google Scholar
  13. 13.
    E. G. Kablukova and B. A. Kargin, Vychisl. Tekhnol., 17, No. 3, 70–82 (2012).Google Scholar
  14. 14.
    I. V. Samokhvalov, I. D. Bryukhanov, S. V. Nasonov, et al., Russ. Phys. J., 55, No. 8, 925–929 (2012).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. B. Kargin
    • 1
  • B. A. Kargin
    • 1
    • 2
  • M. V. Lavrov
    • 1
  1. 1.Institute of Computational Mathematics and Mathematical Geophysics of the Siberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniveristyNovosibirskRussia

Personalised recommendations