Advertisement

Russian Physics Journal

, Volume 55, Issue 4, pp 449–457 | Cite as

A multiple-wavelength self-terminating strontium vapor laser for remote gas analysis of the atmosphere

  • D. A. Bochkovskii
  • A. V. Vasilieva
  • S. I. Dolgii
  • G. G. Matvienko
  • Yu. P. Polunin
  • O. A. Romanovskii
  • A. N. Soldatov
  • O. V. Kharchenko
  • N. A. Yudin
  • S. V. Yakovlev
Quantum Electronics

The feasibility of remote sensing of gas components of the atmosphere by a differential absorption lidar technique using a multiple-wavelength self-terminating SrI and SrII vapor laser has been determined. Development and construction of a sealed-off strontium vapor laser for remote sensing of the atmosphere is reported. This is an outgrowth of broad studies on laser designs, pumping and operating conditions, etc. Informative strontium laser wavelengths to be used for sensing trace gas species have been identified, and laser attenuation by gas components of the atmosphere has been measured. Test experiments have been performed on lidar sensing of water vapor in boundary atmospheric layers.

Keywords

atmosphere laser remote sensing DIAL technique gas analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Agishev, B. Gross, F. Moshary, et al., Appl. Phys. B: Lasers and Optics, 85, No. 1, 149–162 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    G. G. Matvienko, I. V. Ptashnik, O. A. Romanovskii, et al., Prikl. Fizika, No. 1, 129–136 (2002).Google Scholar
  3. 3.
    A. A. Ionin, Yu. M. Klimachev, A. Yu. Kozlov, et al., Russ. Phys. J., 51, No. 11, 1200–1207 (2008).CrossRefGoogle Scholar
  4. 4.
    A. I. Karapuzikov, I. V. Ptashnik, I. V. Sherstov, et al., Infrared Phys. Technol., 41, No. 2, 87–96 (2000).ADSCrossRefGoogle Scholar
  5. 5.
    O. A. Romanovskii, Opt. Mem. Neural Networks (Inform. Optics), 17, No. 2, 131–137 (2008).CrossRefGoogle Scholar
  6. 6.
    A. N. Soldatov, A. G. Filonov, Yu. P. Polunin, and A. V. Vasilieva, J. Atm. Ocean. Optics, 21, No. 8, 572–574 (2008).Google Scholar
  7. 7.
    V. N. Marichev, A. V. Platonov, A. N. Soldatov, et al., Measuring Devices for Investigating the Parameters of the Ground Atmospheric Layers [in Russian], IAO, SR USSR AS, Tomsk, Russia (1977), pp. 80–86.Google Scholar
  8. 8.
    A. V. Vasiljeva, Yu. P. Polunin, A. N. Soldatov, et al., Opt. Mem. Neural Networks (Inform. Optics), 18, No. 2, 108–113 (2009).CrossRefGoogle Scholar
  9. 9.
    L. S. Rothman, D. Jacquemart, A. Barbe, et al., J. Quant. Spectros. Radiat. Transfer, 96, 139–204 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    V. E. Zuev and V. S. Komarov, Statistical Models of Temperature and Gas Composition of the Atmosphere [in Russian], Gidrometeoizdat, Leningrad (1986).Google Scholar
  11. 11.
    O. A. Romanovskii, Prikl. Fiz., No. 1, 24–30 (2009).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • D. A. Bochkovskii
    • 2
  • A. V. Vasilieva
    • 1
  • S. I. Dolgii
    • 2
  • G. G. Matvienko
    • 2
  • Yu. P. Polunin
    • 1
  • O. A. Romanovskii
    • 2
  • A. N. Soldatov
    • 1
  • O. V. Kharchenko
    • 2
  • N. A. Yudin
    • 1
  • S. V. Yakovlev
    • 2
  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.V. E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of SciencesTomskRussia

Personalised recommendations