Russian Physics Journal

, Volume 54, Issue 7, pp 749–755 | Cite as

Features of the crystal structure of disperse carbides in alpha titanium

  • M. B. Ivanov
  • S. S. Manokhin
  • D. A. Nechaenko
  • Yu. R. Kolobov

Investigations of disperse nonmetallic inclusions in unalloyed alpha titanium VT1-0 have been performed by using transmission electron (including scanning and high-resolution) microscopy. Characteristic electron energy losses spectroscopy has shown that these inclusions are titanium carbide particles. It has been revealed that the disperse carbides are formed in the titanium hcp matrix as a phase based on the fcc sublattice of titanium atoms. The inclusion–matrix orientation relationship corresponds to the well-known Kurdyumov–Sachs and Nishiyama–Wassermann relationships \( {\left[ {2\overline {11} 0} \right]_{{\upalpha }}}\parallel {\left[ {011} \right]_{{\updelta }}}{\text{ and }}{\left( {000\overline 1 } \right)_{{\upalpha }}}\parallel {\left( {1\overline 1 1} \right)_{{\updelta }}} \).


titanium titanium carbide coherent inclusions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Christoph Leyens and Manfred Peters, Titanium and Titanium Alloys. Fundamentals and Applications, WILEY-VCH Verlag, Weinheim (2003).CrossRefGoogle Scholar
  2. 2.
    E. A. Karasev, A. S. Kudryavtsev, and L. A. Machishina, Titanium, No. 3/4 (7/8), 3–5 (1995).Google Scholar
  3. 3.
    A. L. Bereslavskii, S. A. Emel’anov, V. M. Maksimov, and L. A. Machishina, Ibid., 15–17.Google Scholar
  4. 4.
    D. A. Panotskii and A. L. Bereslavskii, Ibid., No. 1 (18), 20–23 (2006).Google Scholar
  5. 5.
    Yu. R. Kolobov, Rossiiskie Nanotekhnologii, No. 11/12, 19–31 (2009).Google Scholar
  6. 6.
    M. B. Ivanov, Yu. R. Kolobov, E. V. Golosov, et al., Ibid., No. 3/4 (2011).Google Scholar
  7. 7.
    Yu. R. Kolobov, M. B. Ivanov, E. V. Golosov, and A. V. Penkin, Method of Production of a Submicrocrystalline Structure in Unalloyed Titanium, Patent of the Russian Federation No. 2389568, priority of 29.12.2008 [in Russian].Google Scholar
  8. 8.
    M. B. Ivanov, A. V. Penkin, Yu. R. Kolobov, et al., Deform. Razrushenie Mater., No. 9, 13–18 (2010).Google Scholar
  9. 9.
    Yu. R. Kolobov, O. A. Kashin, E. E. Sagymbaev, et al., Russ. Phys. J., No. 1, 71–78 (2000).Google Scholar
  10. 10.
    L. S. Bushnev, L. V. Chernova, and N. V. Girsova, Fiz. Met. Metalloved., 92, No. 3, 44–51 (2001).Google Scholar
  11. 11.
    Yu. R. Kolobov, A. G. Lipnitskii, M. B. Ivanov, and E. V. Golosov, Kompozity & Nanostruktury, No. 2, 5–32 (2009).Google Scholar
  12. 12.
  13. 13.
    Y. Q. Sun, Phil. Mag. Lett., 78, No. 4, 297–305 (1998).ADSCrossRefGoogle Scholar
  14. 14.
    J. Kwarciak, J. Thermal Analysis, 30, 177–185 (1985).CrossRefGoogle Scholar
  15. 15.
    M. Aindow, T. T. Cheng, C. Lin, et al., Inter. Sci., No. 12, 293–302 (2004).Google Scholar
  16. 16.
    A. G. Lipnitskii, D. A. Aksenov, Yu. R. Kolobov, Russ. Phys. J., No. 10, 1047–1051 (2009).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.REC “Nanostructured Materials and Nanotechnologies” of Belgorod State UniversityBelgorodRussia

Personalised recommendations