Advertisement

Russian Physics Journal

, 54:507 | Cite as

On geometric interpretation of the Aharonov–Bohm effect

  • M. O. Katanaev
Elementary Particle Physics and Field Theory

A geometric interpretation of the Aharonov–Bohm effect is given in terms of connections on principal fiber bundles. It is demonstrated that the principal fiber bundle can be trivial while the connection and its holonomy group are nontrivial. Therefore, the main role is played by geometric rather than topological effects.

Keywords

Aharonov–Bohm effect differential geometry 

References

  1. 1.
    Y. Aharonov and D. Bohm, Phys. Rev., 115 (3), 485–491 (1959).MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    F. G. Werner and D. R. Brill, Phys. Rev. Lett., 4 (7), 344–347 (1960).ADSCrossRefGoogle Scholar
  3. 3.
    R. G. Chambers, Phys. Rev. Lett., 5 (1), 3–5 (1960).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    H. Boersch, H. Hamisch, D. Wohlleben, and K. Grohmann, Z. Phys., 159, 397–404 (1960).ADSCrossRefGoogle Scholar
  5. 5.
    M. V. Berry, Proc. Roy. Soc. London, A392 (1802), 45–57 (1984).ADSGoogle Scholar
  6. 6.
    M. Katanaev, Russ. Phus. J., No. 3, 342–353 (2011).Google Scholar
  7. 7.
    E. Schrödinger, Ann. Phys. Leipzig, 79 (4), 361–376 (1926).CrossRefMATHGoogle Scholar
  8. 8.
    E. Schrödinger, Ann. Phys. Leipzig, 79 (6), 489–527 (1926).CrossRefMATHGoogle Scholar
  9. 9.
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vols. 1 and 2, Interscience Publishers, New York; London (1963).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.V. A. Steklov Mathematical Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations