Russian Physics Journal

, 54:301 | Cite as

Energy transfer between adsorbates by means of surface plasmons

Condensed-State Physics

Nonradiative electron excitation energy transfer between the molecules adsorbed by the plane conducting surface is investigated. It is demonstrated that the mechanism with participation of surface plasmons can be efficient for energy transfer in such system. A dependence of the energy transfer rate in the donor-acceptor adsorbate pair on the distance and anisotropy parameters is established. The efficiencies of the direct dipoledipole and plasmon channels of energy transfer are compared. The dominating (exceeding by 1–2 orders of magnitude the energy transfer rate in a system without conducting bodies) contribution of the plasmon mechanism to the total energy transfer rate is detected when molecules are close to the metal surface.


surface plasmon nonradiative energy transfer donor-acceptor pair dipole-dipole interaction 


  1. 1.
    R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys., 37, 1 (1978).CrossRefGoogle Scholar
  2. 2.
    S. K. Sekatskii and V. S. Letokhov, Pis’ma Zh. Eksp. Teor. Fiz., 63, No. 5, 311–315 (1996).Google Scholar
  3. 3.
    H. T. Dung, L. Knöll, and D. G. Welsch, Phys. Rev., A65, 043813 (2002).ADSGoogle Scholar
  4. 4.
    D. Jankovski, P. Bojarski, P. Kwiek, and S. Rangelova-Jankovska, Chem. Phys., 373, 238–242 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    M. G. Kucherenko and T. M. Chmereva, Fiz. Tverd. Tela, 50, No. 3, 512–518 (2008).Google Scholar
  6. 6.
    R. H. Ritchie, Phys. Rev., 106, No. 5, 874–881 (1957).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    M. A. Kozhushner, Zh. Eksp. Teor. Fiz., No. 56, 1940–1951 (1969).Google Scholar
  8. 8.
    E. Evans and D. L. Mills, Phys. Rev., B8, No. 12, 4004–4018 (1973).ADSGoogle Scholar
  9. 9.
    M. G. Kucherenko, T. M. Chmereva, and D. A. Kislov, in: Proc. Int. Conf. “Organic Photonics” (ICONRUSSIA 2009), Saint Petersburg (2009), pp. 94–102.Google Scholar
  10. 10.
    V. V. Klimov, Nanoplasmonics [in Russian], Fizmatlit, Moscow (2009).Google Scholar
  11. 11.
    V. L. Ermolaev, E. N. Bodunov, E. B. Sveshnikova, and T. A. Shakhverdov, Nonradiative Electron Excitation Energy Transfer [in Russian], Nauka, Leningrad (1977).Google Scholar
  12. 12.
    V. M. Silkin, J. M. Pitarke, E. V. Chulkov, and P. M. Echenique, Phys. Rev., B72, 115435 (2005).ADSGoogle Scholar
  13. 13.
    B. Diaconescu, K. Pohl, L. Vattuone, et al., Nature (London), 448, 57 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    K. Pohl, B. Diaconescu, G. Vercelli, et al., Europhys. Lett., 90, 57006 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    S. J. Park and R. E. Palmer, Phys. Rev. Lett., 105, 016801 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    G. D. Benemanskaya, K. E. Rovinskii, and G. E. Frank-Kamenetskaya, JETP Lett., 74, No. 2, 88–91 (2001).ADSCrossRefGoogle Scholar
  17. 17.
    T. Nagao, T. Hildebrandt, M. Henzler, and Sh. Hasegawa, Phys. Rev. Lett., 86, No. 25, 5747–5750 (2001).ADSCrossRefGoogle Scholar
  18. 18.
    E. P. Rugeramigabo, T. Nagao, and H. Pfnur, Phys. Rev., B78, 155402 (2008).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.Orenburg State UniversityOrenburgRussia

Personalised recommendations