Advertisement

Russian Physics Journal

, Volume 53, Issue 11, pp 1131–1139 | Cite as

Influence of the temperature of aluminum oxide micropowder modification with Al2O3 nanopowders on the optical properties and radiation resistance of coatings manufactured on their basis

  • M. M. Mikhailov
  • A. N. Lapin
Article

Influence of the temperature of aluminum oxide micropowder modification with Al2O3 nanopowders in the interval 200–1000°C on the granulometric composition, diffusion reflection spectra in the wavelength range 360–2100 nm, and integral solar radiation absorption coefficient of coatings fabricated on the basis of these powders as well as on changes of these parameters upon exposure to electrons is investigated. It is demonstrated that with increase in the modification temperature, the average powder particle size decreases, the negative action is intensified, and the radiation resistance of coatings increases.

Keywords

nanoparticles powders modification radiation resistance reflection spectra coating 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. M. Mikhailov and V. V. Neshchimenko, Poverkhnost’. Rentgen., Sinkhrotr. Neitr. Issled., No. 8, 88 (2009).Google Scholar
  2. 2.
    M. M. Mikhailov, V. V. Neshchimenko, Li Chundun, and N. V. Dedov, Poverkhnost’. Rentgen., Sinkhrotr. Neitr. Issled., No. 9, 105 (2009). Google Scholar
  3. 3.
    M. M. Mikhailov and A. N. Sokolovskii, Russ. Phys. J., No. 7, 733 (2007).Google Scholar
  4. 4.
    M. M. Mikhailov, A. N. Lapin, S. P. Andriets, and N. V. Dedov, Russ. Phys. J., No. 10, 1036 (2009).Google Scholar
  5. 5.
    A. S. Verevkin, Studies of the Optical Properties and Photo- and Radiation Resistance of Zirconium Dioxide Powders and Heat-Regulating Coatings Synthesized on Their Basis, Author’s Abstract Cand. Physs.-Math. Sci. Dissert., Tomsk University of Control Systems and Radioelectronics, Tomsk (2004), 17 pp.Google Scholar
  6. 6.
    V. K. Larin, V. M. Kondakov, and N. V. Dedov, Izv. Vyssh. Uchebn. Zaved. Tsvetn. Metallurg., No. 5, 59–64 (2003).Google Scholar
  7. 7.
    L. G. Kositsyn, M. M. Mikhailov, M. I. Dvoretskii, et al., Prib. Tekh. Eksp., No. 4, 176–180 (1985).Google Scholar
  8. 8.
    M. M. Mikhailov and M. I. Dvoretskii, Sov. Phys. J., No. 7, 591–594 (1988).Google Scholar
  9. 9.
    M. Blanco, J. Coello, H. Ityrriaga, et al., Analyst, 124, 135–150 (1998).CrossRefADSGoogle Scholar
  10. 10.
    V. S. Kortov, I. I. Mil’man, and S. S. Nikiforov, Fiz. Tverd. Tela, 45, No. 7, 1202–1207 (2003).Google Scholar
  11. 11.
    V. S. Kortov, A. E. Ermakov, and A. F. Zatsepin, Fiz. Tverd. Tela, 50, No. 5, 916–920 (2008).Google Scholar
  12. 12.
    V. S. Kortov, A. E. Ermakov, and A. F. Zatsepin, in: Materials of the 2nd All-Russian Conf. on Nanomaterials “Nano-2007,” Novosibirsk (2007), p. 177.Google Scholar
  13. 13.
    N. Kristianpoller, A. Rehavi, et al., Nucl. Instrum. Methods Phys. Res., B141, 343–346 (1998).ADSGoogle Scholar
  14. 14.
    G. W. Arnold and W. D. Compton, Phys. Rev. Lett., 4, 66–69 (1960).CrossRefADSGoogle Scholar
  15. 15.
    E. A. Kotomin and A. I. Popov, Nucl. Instrum. Methods Phys. Res., B141, 1–15 (1998).ADSGoogle Scholar
  16. 16.
    K. H. Lee and J. H. Crawford, Phys. Rev., B19, 3217–3221 (1979).ADSGoogle Scholar
  17. 17.
    P. C. Levy, Phys. Rev., 123, 1226–1230 (1961).CrossRefADSGoogle Scholar
  18. 18.
    E. D. Aluker, V. V. Gavrilov, et al., Phys. Status Solidi, B171, No. 1, 283–288 (1992).CrossRefADSGoogle Scholar
  19. 19.
    F. S. Johnson, J. Meteorological, 11, No. 6, 431–439 (1954).CrossRefGoogle Scholar
  20. 20.
    M. M. Mikhailov and V. N. Krutikov, J. Adv. Mater., No. 3, 106–113 (1996).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.Tomsk State University of Control Systems and RadioelectronicsTomskRussia

Personalised recommendations