Advertisement

Russian Physics Journal

, 53:1118 | Cite as

Asymptotic dynamics of extremely short pulses in a system of carbon nanotubes

  • M. B. Belonenko
  • N. G. Lebedev
  • E. N. Nelidina
Article

Asymptotic behavior of extremely short optical pulses in a system of carbon nanotubes is analyzed. The electromagnetic field is considered in the context of the Maxwell equations, and the electron system of carbon nanotubes is considered in the low-temperature approximation of quantum mechanics. By means of numerical modeling, the range of parameters is established for which the examined system is described by the asymptotes of the sine-Gordon equations.

Keywords

solitons carbon nanotubes analog of the sine-Gordon equation 

References

  1. 1.
    M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press, Inc. (1996).Google Scholar
  2. 2.
    A. L. Ivanovskii, Quantum Chemistry in Materials Science. Nanotube Forms of Substance [in Russian], Publishing House of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg (1999).Google Scholar
  3. 3.
    Yu. E. Lozovik and A. M. Popov, Usp. Fiz. Nauk, 165, 752 (1997).Google Scholar
  4. 4.
    A. V. Eletskii, Usp. Fiz. Nauk, 170, 113 (2000).CrossRefGoogle Scholar
  5. 5.
    G. A. Vinogradov, T. Yu. Astakhova, O. D. Gurin, and A. A. Ovchinnikov, in: Abstracts of Invited Lectures and Contributed Papers “Fullerenes and Atomic Clusters,” Saint Peterburg (1999), p. 189.Google Scholar
  6. 6.
    T. Yu. Astakhova, O. D. Gurin, and G. A. Vinogradov, in: Abstracts of Invited Lectures and Contributed Papers “Fullerenes and Atomic Clusters,” Saint Peterburg (2001), p. 319.Google Scholar
  7. 7.
    T. Yu. Astakhova, O. D. Gurin, M. Menon, and G. A. Vinogradov, Phys. Rev., B64, 035418 (2001).ADSGoogle Scholar
  8. 8.
    S. A. Maksimenko and G. Ya. Slepyan, in: Handbook of Nanotechnology. Nanometer Structure: Theory, Modeling, and Simulation, SPIE Press, Bellingham (2004), pp. 145–206.Google Scholar
  9. 9.
    G. Ya. Slepyan, S. A. Maksimenko, V. P. Kalosha, et al., Phys. Rev., A60, No. 2, R777 (1999).ADSGoogle Scholar
  10. 10.
    M. V. Belonenko, E. V. Demushkina, and N. G. Lebedev, J. Russ. Laser Res., 27, No. 5, 457–465 (2006).CrossRefGoogle Scholar
  11. 11.
    M. V. Belonenko, N. G. Lebedev, and E. V. Demushkina, Fiz. Tverd. Tela, 50, No. 2, 367–373 (2008).Google Scholar
  12. 12.
    M. F. Lin and K. W.-K. Shung, Phys. Rev., B50, No. 23, 17744 (1994).ADSGoogle Scholar
  13. 13.
    R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev., B46, No. 3, 1804 (1992).ADSGoogle Scholar
  14. 14.
    P. R. Wallace, Phys. Rev., 71, No. 9, 622 (1947).CrossRefMATHADSGoogle Scholar
  15. 15.
    É. M. Épshtein, Fiz. Tverd. Tela, 19, No. 11, 3456–3458 (1977).Google Scholar
  16. 16.
    R. Bullough and P. Caudrey, Solitons, Springer-Verlag, Berlin–Heidelberg–New York (1980).MATHCrossRefGoogle Scholar
  17. 17.
    N. S. Bakhvalov, Numerical Methods (Analysis, Algebra, and Ordinary Differential Equations) [in Russian], Nauka, Moscow (1975).Google Scholar
  18. 18.
    P. W. Kitchenside, P. J. Caudrey, and R. K. Bullough, Phys. Scr., 20, 673 (1979).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • M. B. Belonenko
    • 1
  • N. G. Lebedev
    • 2
  • E. N. Nelidina
    • 2
    • 3
  1. 1.Volgograd Institute of BusinessVolgogradRussia
  2. 2.Volgograd State UniversityVolgogradRussia
  3. 3.Volgograd State Medical UniversityVolgogradRussia

Personalised recommendations