Russian Physics Journal

, Volume 53, Issue 4, pp 421–430 | Cite as

Vacuum polarization of a scalar field on the nonunimodular lie groups

Elementary Particle Physics and Field Theory

A method for calculating the vacuum average energy-momentum tensors for a scalar field on the nonunimodular Lie groups is developed. To solve this problem, a method of generalized harmonic analysis on the Lie groups is used based on the method of orbits of coadjoint representation.


vacuum polarization energy-momentum tensor harmonic analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. I. Breev, I. V. Shirokov, and D. Razumov, Russ. Phys. J., No. 10, 1012 (2007).Google Scholar
  2. 2.
    S. P. Baranovskii, V. V. Mikheev, and I. V. Shirokov, Russ. Phys. J., No. 11, 1033 (2002).Google Scholar
  3. 3.
    I. V. Shirokov, Teor. Matem. Fiz., 123, No. 3, 407 (2000).MathSciNetGoogle Scholar
  4. 4.
    I. V. Shirokov, K-orbits, Harmonic Analysis on Homogeneous Spaces and Integration of Differential Equations, Preprint, Omsk State University, Omsk (1998).Google Scholar
  5. 5.
    A. A. Kirillov, Elements of Representation Theory [in Russian], Nauka, Moscow (1978).Google Scholar
  6. 6.
    B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry [in Russian], Nauka, Moscow (1979).Google Scholar
  7. 7.
    A. A Grib, S. G. Mamaev, V. M. Mostepanenko, Quantum Effects in Intensive External Fields [in Russian], Nauka, Moscow (1980).Google Scholar
  8. 8.
    N. Birell and P. Devis, Quantum Fields in Curved Space-Time [Russian translation], Mir (1984).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.Tomsk State UniversityTomskRussia

Personalised recommendations