Russian Physics Journal

, Volume 53, Issue 2, pp 182–187 | Cite as

Phase transition in three-dimensional quantum electrodynamics at T ≠ 0

  • M. Sh. Pevzner
  • D. V. Kholod

Dynamic mass generation in 3D quantum electrodynamics (QED3) is considered at T ≠ 0. To solve the Schwinger–Dyson equation for the Matsubara electron Green’s function, the ladder approximation is used and the corresponding photonic function is taken in the Landau gauge. In this case, the instant approximation is used for the photonic function. It is established that the process of dynamical mass generation in QED3 at T ≠ 0 is accompanied by a phase transition. Formal analogy of transitions in the coupling constant is revealed at T ≠ 0 in QED3, at T = 0 in QED4, and in graphene theory. Critical values of the coupling constant and temperature, calculated numerically based on an approximate analytical solution of the Schwinger–Dyson equation are of the same orders of magnitude.


phase transition coupling constant dynamic mass critical temperature critical coupling constant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. P. Gusynin, A. W. Schreiber, A. W. Sizer, and A. G. Williams, Phys. Rev., D60, No. 6, 065007 (1999).ADSGoogle Scholar
  2. 2.
    P. Maris, Phys. Rev., D52, No. 10, 6087–6097 (1995).MathSciNetADSGoogle Scholar
  3. 3.
    M. Sh. Pevzner, hep-ph/0210235.Google Scholar
  4. 4.
    E. V. Gorbar, V. P. Gusynin, V. A. Miransky, and J. A. Shovkovy, Phys. Rev., B66, No. 4, 045108 (2002).ADSGoogle Scholar
  5. 5.
    A. Ayala and A. Bashir, Phys. Rev., D67, No. 7, 076005 (2003).ADSGoogle Scholar
  6. 6.
    O. K. Kalashnikov, Pis’ma Zh. Eksp. Teor. Fiz., 41, No. 11, 447–450 (1985).MathSciNetGoogle Scholar
  7. 7.
    O. K. Kalashnikov, Pis’ma Zh. Eksp. Teor. Fiz., 41, No. 3, 122–125 (1985).MathSciNetGoogle Scholar
  8. 8.
    L. D. Landau and E. M. Lifshits, Theoretical Physics. Vol. 9, Statistical Physics [in Russian], Nauka, Moscow (1978).Google Scholar
  9. 9.
    V. L. Ginzburg and D. A. Kirzhnitsa, eds., Problems in High-Temperature Superconductivity [in Russian], Nauka, Moscow (1977).Google Scholar
  10. 10.
    M. Sh. Pevzner, Nonperturbative Quantum Electrodynamics at T ≠ 0, Preprint/ITP-84-50E, Kiev (1991).Google Scholar
  11. 11.
    M. Sh. Pevzner, Ukr. Fiz. Zh., 40, No. 10, 1042–1049 (1995).Google Scholar
  12. 12.
    T. Maskawa and H. Nakajima, Progr. Theor. Phys., 52, No. 4, 1326–1354 (1974).CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    R. Fukuda and T. Kugo, Nucl. Phys., B117, No. 1, 250–264 (1976).CrossRefADSGoogle Scholar
  14. 14.
    P. I. Fomin, V. P. Gusynin, V. A. Miransky, and Yu. A. Sitenko, Rеv. Nuovo Cimento, 6, No. 5, 1–90 (1983).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.Ukraine National Mining UniversityDnepropetrovskUkraine

Personalised recommendations