Advertisement

Russian Physics Journal

, Volume 53, Issue 1, pp 29–35 | Cite as

Resonant interaction of elastic thin bar vibrations with a shear shallow-water flow

  • S. G. Gestrin
  • A. N. Sal’nikov
  • E. K. Sergeeva
Article

It is demonstrated that resonant interaction of a thin bar with a shear shallow-water flow results in the development of wind instability. The dispersion equation and the instability increment are derived. The wavelength range in which the instability exists is narrowed down when the sound velocity decreases. The frequency and increment of bending waves are estimated numerically for various flow parameters.

Keywords

wind instability Kelvin–Helmholtz instability increment dispersion equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. A. Stepanyants and A. L. Fabricant, Usp. Fiz. Nauk, 159, No. 1, 83–123 (1989).Google Scholar
  2. 2.
    L. D. Landau and E. M. Lifshits, Theoretical Physics. Vol. VI. Hydbarynamics [in Russian], Nauka, Moscow (1986).Google Scholar
  3. 3.
    M. Birkinshow, Month. Not. R. Astron. Soc., 208, 887–903 (1984).ADSGoogle Scholar
  4. 4.
    S. G. Gestrin and V. M. Kontorovich, Zh. Eksp. Teor. Fiz., 91, No. 3, 779–791 (1986).ADSGoogle Scholar
  5. 5.
    S. G. Gestrin and V. M. Kontorovich, Radiofiz. Radioastron., 3, No. 3, 259–272 (1998).Google Scholar
  6. 6.
    S. G. Gestrin and A. N. Sal’nikov, Russ. Phys. J., No. 7, 718–722 (2007).Google Scholar
  7. 7.
    L. D. Landau and E. M. Lifshits, Theoretical physics. Vol. VII. Elasticity Theory [in Russian], Nauka, Moscow (1987).Google Scholar
  8. 8.
    N. Freman and P. U. Freman, WKB Approximation [in Russian], Mir, Moscow (1967).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • S. G. Gestrin
    • 1
  • A. N. Sal’nikov
    • 1
  • E. K. Sergeeva
    • 1
  1. 1.Saratov State Technical UniversitySaratovRussia

Personalised recommendations