Skip to main content
Log in

Optimization of an anti-reflective layer of solar panels based on ab initio calculations

  • Published:
Russian Physics Journal Aims and scope

The optical properties of textured surfaces of silicon solar cells are investigated by computer modeling. In calculations, the finite difference time-domain (FDTD) method is used to solve the Maxwell equations. Optimal sizes and shape of the textured surface are determined for which the reflection coefficient reaches its minimum. A comparison with the experimental data available from the literature is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Born and E. Wolf, Principles of Optics [Russian translation], Nauka, Moscow (1973).

    Google Scholar 

  2. V. M. Aroutiounian, Kh. Martirosyan, and P. Soukiassian, J. Phys., D39, 1623 (2006).

    ADS  Google Scholar 

  3. C. C. Striemer and P. M. Fauchet, Appl. Phys. Lett., 81, 2980 (2002).

    Article  ADS  Google Scholar 

  4. C. G. Bernhard, Endeavour, 26, 79 (1967).

    Google Scholar 

  5. Y. Kanamori, M. Sasaki, and K. Hane, Opt. Lett., 24, 1422 (1999).

    Article  ADS  Google Scholar 

  6. Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, J. Vac. Sci. Technol., B21, 2874 (2003).

    Google Scholar 

  7. P. Lalanne and G. M. Morris, Nanotechnology, 8, 53 (1997).

    Article  ADS  Google Scholar 

  8. Yi-Fan Huang et al., Nature Nanotechnology, 2, 770 (2007).

    Article  ADS  Google Scholar 

  9. M. A. Green and M. Keevers, Prog. Photovolt., 3, No. 3, 189 (1995).

    Article  Google Scholar 

  10. A. Taflove and S. H. Hagness, Computational Electrodynamics: The Finite Difference Time-Domain Method, Artech House, Boston (2005).

    Google Scholar 

  11. A. Farjadpour et al., Opt. Lett., 31, 2972 (2006).

    Article  ADS  Google Scholar 

  12. A. Deinega and I. Valuev, Opt. Lett., 32, 3429 (2007).

    Article  ADS  Google Scholar 

  13. F. Wu and K. W. Whites, Electromagnetics, 21, No. 2, 97 (2001).

    Article  Google Scholar 

  14. G. Franceschetti, Trans. Antennas Propag., 12, 754 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  15. I. Valuev, A. Deinega, and S. Belousov, Opt. Lett., 33, 1491 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Deinega.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 13–19, November, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deinega, A.V., Konistyapina, I.V., Bogdanova, M.V. et al. Optimization of an anti-reflective layer of solar panels based on ab initio calculations. Russ Phys J 52, 1128–1134 (2009). https://doi.org/10.1007/s11182-010-9350-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-010-9350-0

Keywords

Navigation