Advertisement

Russian Physics Journal

, Volume 52, Issue 11, pp 1128–1134 | Cite as

Optimization of an anti-reflective layer of solar panels based on ab initio calculations

  • A. V. Deinega
  • I. V. Konistyapina
  • M. V. Bogdanova
  • I. A. Valuev
  • Yu. E. Lozovik
  • B. V. Potapkin
Article

The optical properties of textured surfaces of silicon solar cells are investigated by computer modeling. In calculations, the finite difference time-domain (FDTD) method is used to solve the Maxwell equations. Optimal sizes and shape of the textured surface are determined for which the reflection coefficient reaches its minimum. A comparison with the experimental data available from the literature is performed.

Keywords

anti-reflective coatings textured coatings solar panels solar cell photovoltaics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Born and E. Wolf, Principles of Optics [Russian translation], Nauka, Moscow (1973).Google Scholar
  2. 2.
    V. M. Aroutiounian, Kh. Martirosyan, and P. Soukiassian, J. Phys., D39, 1623 (2006).ADSGoogle Scholar
  3. 3.
    C. C. Striemer and P. M. Fauchet, Appl. Phys. Lett., 81, 2980 (2002).CrossRefADSGoogle Scholar
  4. 4.
    C. G. Bernhard, Endeavour, 26, 79 (1967).Google Scholar
  5. 5.
    Y. Kanamori, M. Sasaki, and K. Hane, Opt. Lett., 24, 1422 (1999).CrossRefADSGoogle Scholar
  6. 6.
    Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, J. Vac. Sci. Technol., B21, 2874 (2003).Google Scholar
  7. 7.
    P. Lalanne and G. M. Morris, Nanotechnology, 8, 53 (1997).CrossRefADSGoogle Scholar
  8. 8.
    Yi-Fan Huang et al., Nature Nanotechnology, 2, 770 (2007).CrossRefADSGoogle Scholar
  9. 9.
    M. A. Green and M. Keevers, Prog. Photovolt., 3, No. 3, 189 (1995).CrossRefGoogle Scholar
  10. 10.
    A. Taflove and S. H. Hagness, Computational Electrodynamics: The Finite Difference Time-Domain Method, Artech House, Boston (2005).Google Scholar
  11. 11.
    A. Farjadpour et al., Opt. Lett., 31, 2972 (2006).CrossRefADSGoogle Scholar
  12. 12.
    A. Deinega and I. Valuev, Opt. Lett., 32, 3429 (2007).CrossRefADSGoogle Scholar
  13. 13.
    F. Wu and K. W. Whites, Electromagnetics, 21, No. 2, 97 (2001).CrossRefGoogle Scholar
  14. 14.
    G. Franceschetti, Trans. Antennas Propag., 12, 754 (1964).CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    I. Valuev, A. Deinega, and S. Belousov, Opt. Lett., 33, 1491 (2008).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • A. V. Deinega
    • 1
  • I. V. Konistyapina
    • 1
  • M. V. Bogdanova
    • 1
  • I. A. Valuev
    • 2
  • Yu. E. Lozovik
    • 1
    • 3
  • B. V. Potapkin
    • 1
    • 4
  1. 1.Kintech Lab LtdMoscowRussia
  2. 2.Joint Institute for High Temperatures of the Russian Academy of SciencesMoscowRussia
  3. 3.Institute for Spectroscopy of the Russian Academy of SciencesTroitsk, Moscow RegionRussia
  4. 4.Russian Science Center Kurchatov InstituteMoscowRussia

Personalised recommendations