Russian Physics Journal

, Volume 52, Issue 10, pp 1068–1076 | Cite as

Formalism of semiclassical asymptotics for a two-component Hartree-type equation

  • E. I. Smirnova
  • A. Yu. Trifonov
  • A. V. Shapovalov

A formalism of semiclassical asymptotics has been developed for a two-component Hartree-type evolutionary equation with a small asymptotic parameter multiplying the partial derivatives, a nonlocal cubic nonlinearity, and a Hermite matrix operator. Semiclassical solutions are constructed in the class of two-component functions concentrated in the neighborhood of a point moving along the phase trajectory of a dynamic Hamilton–Ehrenfest system.


semiclassical approximation Hartree-type equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. A. Cornell and C. E. Wieman, Rev. Mod. Phys., 74, 875–893 (2002); W. Ketterle, Ibid., 1131–1151.CrossRefADSGoogle Scholar
  2. 2.
    G. Nicolis and I. Prigozhin, Self-Organization in Nonequilibrium Systems, Wiley, New York (1977).MATHGoogle Scholar
  3. 3.
    H. Haken, Synergetics, Springer, Berlin – New York (1978).MATHGoogle Scholar
  4. 4.
    M. A. Tsyganov, V. N. Biktashev, J. Brindley, et al., Usp. Fiz. Nauk, 177, No. 3, 275–300 (2007).CrossRefGoogle Scholar
  5. 5.
    M. V. Karasev and V. P. Maslov, Nonlinear Poisson Brackets. Geometry and Quantization [in Russian], Nauka, Moscow (1991).MATHGoogle Scholar
  6. 6.
    Y. Castin, Bose–Einstein condensates in atomic gases: simple theoretical results, e-print: cond-mat/0105058 (2001).Google Scholar
  7. 7.
    A. J. Leggett, Rev. Mod. Phys., 73, 307–356 (2001).CrossRefADSGoogle Scholar
  8. 8.
    G. Modugno, M. Modugno, F. Riboli, et al., Phys. Rev. Lett., 89, 190404 (2002).CrossRefADSGoogle Scholar
  9. 9.
    M. Mudrich, S. Kraft, K. Singer, et al., Ibid., 88, 253001 (2002).Google Scholar
  10. 10.
    M. R. Matthews, B. P. Anderson, P. C. Haljan, et al., Ibid., 83, 2498 (1999).Google Scholar
  11. 11.
    D. S. Hall, M. R. Matthews, J. R. Ensher, et al., Ibid., 81, 1539 (1998).Google Scholar
  12. 12.
    J. Stenger, S. Inouye, D. M. Stamper-Kurn, et al., Nature, 396, 345–347 (1998).CrossRefADSGoogle Scholar
  13. 13.
    M. D. Barrett, J. A. Sauer, and M. S. Chapman, Phys. Rev. Lett., 87, 010404 (2001).CrossRefADSGoogle Scholar
  14. 14.
    K. Kasamatsu, M. Tsuboto, and M. Ueda, Int. J. Mod. Phys. B, 19, No. 11, 1835–1904 (2005).MATHCrossRefADSGoogle Scholar
  15. 15.
    I. V. Kirnos, F. N. Litvinets, A. Yu. Trifonov, and M. A. Shipulya, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 6, 77–81 (2007).Google Scholar
  16. 16.
    V.V. Belov, A. Yu. Trifonov, and A. V. Shapovalov, Int. J. Math. Math. Sci., 32, No. 6, 325–370 (2002).MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    H. P. Robertson, Phys. Rev., 46, No. 9, 794–801 (1934).MATHCrossRefADSGoogle Scholar
  18. 18.
    V. G. Bagrov, D. M. Gitman, M. C. Baldiotti, and A. D. Levin, Ann. Phys., 14, No. 11–12, 764–789 (2005).MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    V. V. Dodonov, I. A. Malkin, and V. I. Man’ko, Intern. J. Theor. Phys., 14, No. 1, 37–54 (1975).CrossRefMathSciNetGoogle Scholar
  20. 20.
    A. L. Lisok, A. Yu. Trifonov, and A. V. Shapovalov, Symmetry, Integrability and Geometry: Methods and Applications, 1, 1–14 (2005).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • E. I. Smirnova
    • 1
  • A. Yu. Trifonov
    • 2
  • A. V. Shapovalov
    • 3
  1. 1.Moscow Institute of Electronics and Mathematics (Technical University)MoscowRussia
  2. 2.Tomsk Polytechnic UniversityTomskRussia
  3. 3.Tomsk State UniversityTomskRussia

Personalised recommendations