Advertisement

Russian Physics Journal

, Volume 52, Issue 10, pp 1021–1029 | Cite as

Estimation of applicability of perturbation theory to solution of the kinetic Boltzmann equation in calculations of charge-carrier relaxation time in isotropic polycrystalline p-silicon

  • A. G. Moiseev
Article

A condition is formulated for application of perturbation theory to solution of the kinetic Boltzmann equation in calculations of charge-carrier relaxation time in an isotropic silicon polycrystal, where holes are scattered both by a disordered system of potential barriers formed on crystallite surfaces and by a disordered lattice of silicon atoms characterized by local ordering. The total specific resistance of p-type isotropic polycrystalline silicon is estimated for the grain size d = 230 Å, temperature T = 300 K, and hole concentration p = (5.0 – 10.0) ⋅ 1019 cm−3. The calculated specific resistances of p-type polycrystalline silicon are compared with the experimental data.

Keywords

relaxation time local ordering and a disordered system of potential barriers in polycrystals kinetic equation perturbation theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Gridchin, V. M. Lyubimskii, and A. G. Moiseev, Fiz. Tekh. Poluprovodn., 39, No. 2, 208–213 (2005).Google Scholar
  2. 2.
    V. M. Lyubimskii, and A. G. Moiseev, Russ. Phys. J., No. 7, 778‒790 (2006).Google Scholar
  3. 3.
    A. G. Moiseev, Russ. Phys. J., No. 5, 413‒422 (2007).Google Scholar
  4. 4.
    A. G. Moiseev, Russ. Phys. J., No. 2, 195‒209 (2008).Google Scholar
  5. 5.
    V. L. Bonch-Bruevich and S. G. Kalashnikov, Semiconductor Physics [in Russian], Nauka, Moscow, 1990.Google Scholar
  6. 6.
    L. D. Landau, and E. M. Lifshits, Quantum Mechanics. Nonrelativistic Theory [in Russian], Nauka, Moscow, 1974.Google Scholar
  7. 7.
    M. M. Mandurah, K. C. Saraswat, and T. I. Kamins, IEEE Transactions on Electron Devices, ED-28, Nо. 10, 1163–1171 (1981).CrossRefGoogle Scholar
  8. 8.
    M. M. Mandurah, K. C. Saraswat, and T. I. Kamins, IEEE Transactions on Electron Devices, ED-28, Nо. 10, 1171–1175 (1981).CrossRefGoogle Scholar
  9. 9.
    N. C. C. Lu, L. Gerzberg, C. Y. Lu, and J. D. Meindl, IEEE Transactions on Electron Devices, ED-28, Nо. 7, 818–830 (1981).CrossRefADSGoogle Scholar
  10. 10.
    V. L. Bonch-Bruevich, et al., Electronic Theory of Disordered Semiconductors [in Russian], Nauka, Moscow, 1981.Google Scholar
  11. 11.
    W. Harrison, Electronic Structures and the Properties of Solids, V. 2, Dover Publications, New York, 1989.Google Scholar
  12. 12.
    J. Y. W. Seto, J. Appl. Phys., 46, Nо. 12, 5247–5254 (1975).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations