Russian Physics Journal

, Volume 52, Issue 9, pp 957–964 | Cite as

Special features of the grain structure of polycrystalline NaNbO3 with 3-0 connection

  • V. V. Akhnazarova
  • V. D. Komarov
  • O. N. Razumovskaya
  • L. A. Reznichenko
  • L. A. Shilkina
  • S. I. Dudkina
  • V. V. Gershenovich
Condensed-State Physics

Grain structure of porous sodium niobate ceramics (with 3-0 connection and variable porosity changing from 1.0 to 13.6%) fabricated under different conditions is investigated and the microstructure parameters are calculated for different degrees of porosity. It is demonstrated that with increasing degree of porosity, the character of the sodium niobate grain structure changes due to the formation and ordering of the pore -multilayered grain coating clusters, sharp increase in the total pore surface area, and its significant excess over the external sample surface area. These structural changes can influence significantly the integral electrophysical characteristics of the porous sodium niobate ceramics and determine a high degree of its piezoanisotropy.


sodium niobate porosity microstructure grain crystalline structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Y. Ting, Ferroelectrics, 49, 251–256 (1983).Google Scholar
  2. 2.
    K. H. Hikita, K. Jamada, M. Nishioka, and M. Ono, Ferroelectrics, 49, Nos. 1–4, 265–272 (1983).Google Scholar
  3. 3.
    J. Mendola and B. Jimenez, Ferroelectrics, 53, 159–166 (1984).Google Scholar
  4. 4.
    M. Kahn, J. Am. Ceram. Soc., 68, No. 11, 623–628 (1985).CrossRefGoogle Scholar
  5. 5.
    W. Wersing, K. Lubitz, and J. Moliaupt, Ferroelectrics, 68, Nos. 1–4, 77–79 (1986).Google Scholar
  6. 6.
    W. A. Smith and A. A. Shaulov, Ferroelectrics, 87, 309–320 (1988).Google Scholar
  7. 7.
    S. S. Lopatin and T. G. Lupeiko, Izv. Akad. Nauk SSSR. Ser. Neorgan. Mater., 27, No. 9, 1948–1951 (1991).Google Scholar
  8. 8.
    A. N. Rybjanets, L. N. Tatarenko, and E. S. Tsikhotsky, in: Proc. Int. Conf. on Electronic Ceramics and Applications “Electroceramics V,” Vol. 1, Aveiro, Portugal (1996), pp. 281–284.Google Scholar
  9. 9.
    H. D. Megaw, Ferroelectrics, 7, Nos. 1–4, 87–89 (1974).CrossRefGoogle Scholar
  10. 10.
    J. Lefkowitz, K. Lukaszewicz, and H. D. Megaw, Acta Cryst., 20, 670–681 (1966).CrossRefGoogle Scholar
  11. 11.
    V. Cavalieri, Geometry Stated in a New Way in Terms of Indivisible Continuity, Vol. 1 [Russian translation], Gostekhizdat, Moscow (1940).Google Scholar
  12. 12.
    S. A. Saltykov, Stereometric Metallography, 3rd Ed. [in Russian], Metallurgiya, Moscow (1970).Google Scholar
  13. 13.
    E. G. Fesenko, Perovskite Family and Segnetoelectricity [in Russian], Atomizdat, Moscow (1972).Google Scholar
  14. 14.
    B. Jaffe, W. Cook, and G. Jaffe, Piezoelectric Ceramics [Russian translation], Mir, Moscow (1974).Google Scholar
  15. 15.
    V. V. Akhnazarova, L. A. Shilkina, L. A. Reznichenko, et al., Kristallografiya, 54, No. 1, 138–143 (2009).ADSGoogle Scholar
  16. 16.
    A. Ya. Dantsiger, L. A. Reznitchenko, S. I. Dudkina, et al., Ferroelectrics, 214, 255–259 (1998).CrossRefGoogle Scholar
  17. 17.
    A. Ya. Dantsiger, L. A. Reznichenko, S. I. Dudkina, et al., Neorg. Mater., 34, No. 6, 742–745 (1998).Google Scholar
  18. 18.
    T. V. Rogach, S. V. Gavrilyachenko, L. D. Grineva, and L. A. Shilkina, Dielektr. Poluprovodn., No. 20, 43–48 (1981).Google Scholar
  19. 19.
    E. G. Fesenko, A. Ya. Dantsiger, S. I. Dudkina, et al., Izv. Akad. Nauk SSSR. Ser. Neorg. Mater., 27, 424–426 (1991).Google Scholar
  20. 20.
    G. N. Yonker and W. Noorlander, in: Science of Ceramics, Vol. 1, Academic Press, Inc., New York (1962), pp. 255–264.Google Scholar
  21. 21.
    F. N. Bradly, J. Am. Ceram. Soc., 51, No. 5, 293–294 (1968).CrossRefGoogle Scholar
  22. 22.
    T. G. Protsenko, Geometrical phase transitions accompanying the formation of segnetoceramics microstructure (by the example of a TSTS system), Candidate’s Dissertation in Physical and Mathematical Sciences, Rostov State University, Postov-on-Don (1995), 141 pp.Google Scholar
  23. 23.
    Yu. V. Dashko, Percolation representation of segnetoceramics microstructure, Doctoral Thesis in Physical and Mathematical Sciences, Rostov State University, Rostov-on-Don (1997), 401 pp.Google Scholar
  24. 24.
    H. Thomann, Z. Angew. Phys., 20, No. 6, 554–559 (1966).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • V. V. Akhnazarova
    • 1
  • V. D. Komarov
    • 1
  • O. N. Razumovskaya
    • 1
  • L. A. Reznichenko
    • 1
  • L. A. Shilkina
    • 1
  • S. I. Dudkina
    • 1
  • V. V. Gershenovich
    • 1
  1. 1.Scientific Research Institute of Physics at Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations