Russian Physics Journal

, Volume 52, Issue 8, pp 841–849 | Cite as

Accuracy of long-term forecasting geosynchronous satellite motion

  • É. D. Kuznetsov
  • A. O. Kudryavtsev

The accuracy of forecasting geosynchronous satellite motion for 242-year term of forecast using a numerical model of artificial satellite motion taking into account the main perturbing factors including nonsphericity of the Earth’s gravitational field, attraction by the Moon and the Sun, tides inside the Earth, direct light pressure with allowance for the Earth’s shadow effect, and the Pointing–Robertson effect is considered. It is demonstrated that in this case, perturbations of the Earth’s gravitational field harmonics up to the 27th order must be considered. For regular motions, the maximum error in forecasting the geosynchronous satellite position ranges from 0.14 to 2400 km, the error in forecasting the long semiaxis ranges from 0.013 to 1100 m, and the error in forecasting the subsatellite point longitude ranges from 0.069″ to 3.4° depending on the libration amplitude. The accuracy of forecasting depends on the libration amplitude: the less the libration amplitude, the higher the accuracy of forecasting. For quasi-random trajectories, the integration period for which the errors in forecasting do not exceed values obtained for libration motion is determined by the frequency and proximity of the trajectory to unstable stationary points. For the examples considered, this period is about 200 years. The estimated MEGNO factor confirms the efficiency of the numerical model of artificial satellite motion used to investigate the stochastic properties of geosynchronous satellite motion.


numerical modeling orbit evolution geosynchronous satellites. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. V. Bordovitsyna, A. P. Baturin, V. A. Avdyushev, and P. V. Koneva, Fundamental and Applied Problems of Modern Mechanics [in Russian], Publishing House of Tomsk State University, Tomsk (2004).Google Scholar
  2. 2.
    A. M. Mikisha, E. S. Novikova, L. V. Rykhlova, and M. A. Smirnov, in: Circumterrestrial Astronomy of the XXI Century [in Russian], GEOS, Moscow (2001), pp. 145‒149.Google Scholar
  3. 3.
    P. M. Cincotta, C. M. Giordano, and C. Simo, Physica, D182, 151‒178 (2003).MathSciNetADSGoogle Scholar
  4. 4.
    S. Breiter, I. Wytrzyszczak, and B. Melendo, Adv. Space Research, 35, 1313‒1317 (2005).CrossRefADSGoogle Scholar
  5. 5.
    É. D. Kuznetsov, Izv. Vyssh. Uchebn. Zaved. Fiz., No. 12 Suppl., 74‒77 (2003).Google Scholar
  6. 6.
    É D. Kuznetsov and G. T. Kaizer, Kosm. Issled., 45, No. 4, 378‒386 (2007).Google Scholar
  7. 7.
    É. D. Kuznetsov and A. O. Kudryavtsev, Kosm. Issled., 46, No. 5, 452‒456 (2008).Google Scholar
  8. 8.
    M. A. Vashkov’yak and M. L. Lidov, Kosm. Issled., 12, No. 3, 347‒359 (1973).Google Scholar
  9. 9.
    T. V. Bordovitsyna, Modern Numerical Methods in Problems of Celestial Mechanics [in Russian], Nauka, Moscow (1984).MATHGoogle Scholar
  10. 10.
    F. G. Lemoine, S. C. Kenyon, J. K. Factor, et al., Development of the Joint NASA GSFC and National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96, NASA/TP-1998-206861, GSFC (1998).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.A. M. Gor’kii Ural State UniversityEkaterinburgRussia
  2. 2.M. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations