Advertisement

Russian Physics Journal

, 52:640 | Cite as

Parametrical conversion of the frequency of organic lasers into the middle-IR range of the spectrum

  • G. V. Mayer
  • T. N. Kopylova
  • Yu. M. Andreev
  • V. A. Svetlichnyi
  • E. N. Tel’minov
Optics and Spectroscopy

The possibility of parametrical conversion of visible radiation of solid-state organic lasers into the middle-IR range of the spectrum in nonlinear GaSe1–x S x (x = 0‒0.13) crystals is investigated. Generation at the difference frequency (wavelength λ3 = 9.43 μm) of induced oxazine-1 (at λ1 = 740 nm) and rhodamine-800 (λ2 = 803.4 nm) radiation is excited. The conversion efficiency is estimated, and prospects for its further increase are demonstrated.

Keywords

organic lasers parametrical frequency conversion nonlinear crystals 

References

  1. 1.
    Laser Monitoring of the Atmosphere. Topics in Applied Physics, Vol. 14, E. D. Hinkley, ed., Springer Verlag, Berlin (1976).Google Scholar
  2. 2.
    D. K. Killinger, N. Menyuk, and W. E. De Feo, Appl. Phys. Lett., 36, No. 6, 402–405 (1980).CrossRefADSGoogle Scholar
  3. 3.
    Yu. M. Andreev, M. G. Voevodin, P. P. Geiko, et al., Lidar Systems and Their Optoelectronic Elements [in Russian], Publishing House of the Siberian Branch of the Russian Academy of Sciences, Tomsk (2004).Google Scholar
  4. 4.
    G. G. Gurzadyan, V. G. Dmitriev, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals. Springer Series in Optical Sciences, Vol. 64, Springer, Berlin (1999).Google Scholar
  5. 5.
    T. N. Kopylova, G. V.Mayer, T. V. Solodova, et al., Kvant. Elektron., 38 (2), 109–114 (2008).CrossRefGoogle Scholar
  6. 6.
    A. S. Chandra, J. Fox, and C. Swim, in: Proc. Int. Conf. Lasers’95, Mc Lean, VA (1996), pp. 391–396.Google Scholar
  7. 7.
    N. C. Fernelius, Prog. Crystal Growth Charact. Mater., 28, 275–353 (1994).CrossRefGoogle Scholar
  8. 8.
    A. A. Tikhomirov, Yu. M. Andreev, G. V. Lanskii, et al., Proc. SPIE, 6258, 64–72 (2006).Google Scholar
  9. 9.
    Yu. M. Andreev, V. V. Atuchin, G. V. Lanskii, et al., Mater. Sci. Eng., B128, 205–210 (2006).CrossRefGoogle Scholar
  10. 10.
    K. L. Vodopyanov and L. A. Kulevskii, Opt. Commun., 118, 375–378 (1995).CrossRefADSGoogle Scholar
  11. 11.
    N. B. Singh, D. R. Suhre, V. Balakrishna, et al., Prog. Cryst. Growth Charact. Mater., 37, 47–102 (1998).CrossRefGoogle Scholar
  12. 12.
    E. Takaoka and K. Kato, Jpn. J. Appl. Phys., 38, 2755–2759 (1999).CrossRefADSGoogle Scholar
  13. 13.
    K. R. Allakhverdiev, T. Baykara, A. Kultibekov–Gulubayov, et al., J. Appl. Phys., 98, 093515 (1–6) (2005).Google Scholar
  14. 14.
    K. R. Allakhverdiev, R. I. Guliev, E. Yu. Salaev, and V. V. Smirnov, Kvant. Elektron., 9, No. 7, 1483–1485 (1982).Google Scholar
  15. 15.
    E. Takaoka and K. Kato, in: CLEO’98, Vol. 6 of 1998 OSA Tech. Digest. Series, Optical Society of America, Washington, D.C. (1998), pp. 253–254.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • G. V. Mayer
    • 2
  • T. N. Kopylova
    • 1
  • Yu. M. Andreev
    • 1
  • V. A. Svetlichnyi
    • 1
  • E. N. Tel’minov
    • 2
  1. 1.V. D. Kuznetsov Siberian Physical-Technical Institute at Tomsk State UniversityTomskRussia
  2. 2.Tomsk State UniversityTomskRussia

Personalised recommendations