Advertisement

Russian Physics Journal

, Volume 51, Issue 12, pp 1327–1333 | Cite as

Vibrational states of a cobalt dimer on the (111) and (001) copper surfaces

  • S. D. Borisova
  • S. V. Eremeev
  • G. G. Rusina
Condensed-State Physics

The results of calculations of the total (lateral and vertical) relaxation of the (001) and (111) copper surfaces in the presence of a small cluster of cobalt adatoms, local vibrational density of states and polarizations of these states are presented. The calculations were performed using the atomic interaction potentials in a tight binding approximation. An analysis of the results obtained showed that the presence of a cobalt dimer gives rise to modification of the vibrational states of the copper surface and generation of new modes localized both on the adatoms of the cluster and the surface atoms of the substrate. The revealed anisotropy of surface relaxation along [001] results in deformation of atomic bonding and splitting of the vibrational modes of the dimer. The lifetimes of the vibrational states of the dimer are found to be nearly equal for both surfaces under study, with a frequency shift being however observed.

Keywords

surface magnetic clusters phonons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Chen, S. Y. Tong, K. P. Bohnen, et al., Phys. Rev. Lett., 70, 603–606 (1993).CrossRefADSGoogle Scholar
  2. 2.
    S. E. Finberg, J. V. Lakin, and R. D. Diehl, Surf. Sci., 496, 10–20 (2002).CrossRefADSGoogle Scholar
  3. 3.
    G. Benedek and J. P. Toennies, Surf. Sci., 299/300, 587–611 (1994).CrossRefADSGoogle Scholar
  4. 4.
    S. D. Borisova, G. G. Rusina, S. V. Eremeev, et al., Phys. Rev. B, 74, 165412 (2006).CrossRefADSGoogle Scholar
  5. 5.
    I. Yu. Sklyadneva, G. G. Rusina, and E. V. Chulkov, Surf. Sci., 416, 17–36 (1998).CrossRefADSGoogle Scholar
  6. 6.
    I. Yu. Sklyadneva, G. G. Rusina, and E. V. Chulkov, Phys. Rev. B, 65, 235419 (2002).CrossRefADSGoogle Scholar
  7. 7.
    M. T. Kief and W. R. Egelhoff, Phys. Rev. B, 47, 10785 (1993).CrossRefADSGoogle Scholar
  8. 8.
    R. Pentcheva and M. Scheffler, Phys. Rev. B, 61, 2211 (2000).CrossRefADSGoogle Scholar
  9. 9.
    L. Bartels, G. Meyer, and K.-H. Rieder, Phys. Rev. Lett., 79, 697–700 (1997).CrossRefADSGoogle Scholar
  10. 10.
    T.-C. Shen, C. Wang, G. C. Abeln, et al., Science, 268, 1590 (1995).CrossRefADSGoogle Scholar
  11. 11.
    V. G. Kotlyar, A. V. Zotov, A. A. Saranin, et al., Phys. Rev. B, 66, 165401 (2002).CrossRefADSGoogle Scholar
  12. 12.
    V. S. Stepanyuk, D. V. Tsivlin, D. I. Bazhanov, et al., Phys. Rev. B, 63, 235406 (2001).CrossRefADSGoogle Scholar
  13. 13.
    Kai Liu and Shiwu Gao, Phys. Rev. Lett., 95, 226102 (2005).CrossRefADSGoogle Scholar
  14. 14.
    R. A. Miron and K. A. Fichthorn, Phys. Rev. B, 72, 035415 (2005).CrossRefADSGoogle Scholar
  15. 15.
    N. A. Levanov, V. S. Stepanyuk, W. Hergert, et al., Phys. Rev. B, 61, 2230 (2000).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • S. D. Borisova
    • 1
  • S. V. Eremeev
    • 1
  • G. G. Rusina
    • 1
  1. 1.The Institute of Strength Physics and Materials Science SB RASTomskRussia

Personalised recommendations