Russian Physics Journal

, Volume 51, Issue 7, pp 659–665 | Cite as

Mechanism of the fcc-bcc martensitic transformation with the fastest transformation of close-packed planes. I. The lattice parameter ratio and habitus planes

Condensed-State Physics

In terms of the concepts of heterogeneous nucleation and the related driving wave process, a version of the dynamic theory of the formation of martensite crystals is stated in which the wave process initiates the fastest transformation of close-packed {ie659-01} atomic planes of a parent fcc phase into {ie659-02} planes of a bcc phase. The lattice parameter ratio and the orientations of habit planes are analytically related with the elastic properties of the γ-phase. Quantitative estimation performed with the use of elastic moduli for an iron-nickel alloy yields habitus orientations close to {ie659-03}. An experiment is proposed to verify the theoretical predictions. A new pattern of the short-wave correction that finishes the fcc-bcc rearrangement is set forth.


Martensite Martensitic Transformation Habit Plane Martensite Crystal Fast Transformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. P. Kashchenko, Wave Model of Martensite Growth During the γ-α Transformation in Iron-Base Alloys [in Russian], UIF Nauka, Ekaterinburg (1993).Google Scholar
  2. 2.
    M. P. Kashchenko, The wave model of martensite growth for the fcc-bcc transformation of iron-based alloys. arXiv: cond-mat / 0601569 v3 4 Feb 2006.Google Scholar
  3. 3.
    M. P. Kashchenko, V. V. Letuchev, S. V. Konovalov, and S. V. Neskoromnyi, Fiz. Met. Metalloved., 76, Issue 1, 90–101 (1993).Google Scholar
  4. 4.
    F. I. Fedorov. Theory of Elastic Waves in Crystals [in Russian], Nauka, Moscow (1965).Google Scholar
  5. 5.
    M. P. Kashchenko and V. G. Chashchina, in: XVII Petersburg Readings on Problems of Strength. St.-Petersburg, 10–12 April, 2007: Collected Papers, Part II [in Russian], St. Petersburg (2007).Google Scholar
  6. 6.
    M. P. Kashchenko and V. G. Chashchina, The material orientation relationship for the bcc-hcp transformation. arXiv: 0707. 1938 v 1 [cond-mat. mtrl-sci] 13 Jul 2007.Google Scholar
  7. 7.
    G. Haush and H. Warlimont, Acta Met., 21, 400–414 (1973).Google Scholar
  8. 8.
    V. V. Letuchev, V. P. Vereshchagin, I. V. Alexina, and M. P. Kashchenko, J. Phys. (Fr), 5, No. 12, Suppl., 151–156 (1995).Google Scholar
  9. 9.
    N. V. Aristova, I. V. Aleksina, and M. P. Kashchenko, Fiz. Met. Metalloved., 77, Issue 1, 146–150 (1994).Google Scholar
  10. 10.
    M. P. Kashchenko, I. V. Aleksina, V. V. Letuchev, and A. V. Nefedov, Ibid., 80, Issue 6, 10–15 (1995).Google Scholar
  11. 11.
    S. M. Shapiro and S. C. Moss, Phys. Rev. B, 15, 2726–2730 (1977).CrossRefADSGoogle Scholar
  12. 12.
    W. Petry, J. Phys. IV (Fr), 5, Colloque C2, Suppl. J. Phys. III, 15–28 (1995).Google Scholar
  13. 13.
    M. P. Kashchenko and V. P. Vereshchagin, Russ. Phys. J., No. 8, 592–595 (1989).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Ural State Forestry Engineering UniversityYekaterinburgRussia

Personalised recommendations