Russian Physics Journal

, Volume 50, Issue 4, pp 383–386 | Cite as

Thermal capacity, diffusion, and conductivity of Nd1−x SrxMno3 (x = 0.45 and 0.5) manganites

  • A. G. Gamzatov
  • A. M. Aliev
  • Sh. B. Abdulvagidov
  • A. B. Batdalov
  • O. Yu. Gorbenko


Temperature dependences (77–300 K) of the thermal capacity, diffusion, and conductivity are investigated for the Nd 0.5 Sr 0.5 MnO 3 and Nd 0.55 Sr 0.45 MnO 3 polycrystalline samples. The examined characteristics show anomalous behavior in the magnetic phase transition and transition to the charge-ordered state. It is demonstrated that the main reason for a sharp decrease in the thermal conductivity during Nd 0.5 Sr 0.5 MnO 3 transition into the antiferromagnetic charge-ordered state is a change in the phonon spectrum caused by the lattice compression. A temperature dependence of the free phonon path is calculated for the examined temperature interval based on the thermal diffusion obtained and the literature data on the sound propagation velocity.


Thermal Capacity Thermal Diffusion Manganite Phonon Spectrum Magnetic Phase Transition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. B. Salamon and M. Jaime, Rev. Mod. Phys., 73, 583–628 (2001).CrossRefADSGoogle Scholar
  2. 2.
    A. M. Kadomtseva, Yu. F. Popov, et al., Physica, B329-333, 854 (2003).ADSGoogle Scholar
  3. 3.
    R. Kajimoto, H. Yoshizawa, H. Kawano, et al., Phys. Rev., B60, 9506 (1999).ADSGoogle Scholar
  4. 4.
    S. B. Abdulvagidov, G. M. Shakhshaev, and I. K. Kamilov, Prib. Tekh. Eksp., No. 5, 134 (1996).Google Scholar
  5. 5.
    T. Sasaki, E. Ozaki, T. Uozu, et al., J. Phys. Chem. Solids, 63, 917–920 (2002).CrossRefADSGoogle Scholar
  6. 6.
    J. Lopez, O. F. de Lima, P. N. Lisboa-Filho, et al., arXiv:cond-mat/0203382 (2002).Google Scholar
  7. 7.
    J. Lopez, P. N. Lisboa-Filho, O. F. de Lima, et al., J. Magn. Magn. Mat., 242-245, 683–685 (2002).CrossRefADSGoogle Scholar
  8. 8.
    A. M. Aliev, Sh. B. Abdulvagidov, A. B. Batdalov, et al., Fiz. Tverd. Tela, 45, 124 (2003).Google Scholar
  9. 9.
    H. Fujishiro, S. Sugavara, and M. Ikebe, Physica, B316-317, 331–334 (2002).ADSGoogle Scholar
  10. 10.
    R. K. Zheng, R. X. Huang, A. N. Tang, et al., J. Alloys Comp., 345, 68–71 (2002).CrossRefGoogle Scholar
  11. 11.
    Yu. F. Popov, A. M. Kadomtseva, G. P. Vorob’ev, et al., Fiz. Tverd. Tela, 45, 1221 (2003).Google Scholar
  12. 12.
    J. Geck, D. Bruns, C. Hess, et al., Phys. Rev., B66, 184407 (2002).Google Scholar
  13. 13.
    J. L. Cohn, J. Supercond. Incorp. Novel Magn., 13, 291–304 (2000).CrossRefGoogle Scholar
  14. 14.
    D. W. Visser, A. P. Ramirez, and M. A. Subramanian, Phys. Rev. Lett., 78, 3947–3950 (1997).CrossRefADSGoogle Scholar
  15. 15.
    H. Fujishiro, Physica, B307, 57–63 (2001).ADSGoogle Scholar
  16. 16.
    M. Ikebe, H. Fujishiro, and S. Sugawara, Physica, B281-282, 496–497 (2000).ADSGoogle Scholar
  17. 17.
    Y. Tomioka, H. Kuwahara, A. Asamitsu, et al., Appl. Phys. Lett., 70, 3609 (1997).CrossRefADSGoogle Scholar
  18. 18.
    V. V. Krishnamurthy, I. Watanabe, K. Nagamine, et al., Phys. Rev., B61, 4060–4069 (2000).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • A. G. Gamzatov
    • 1
  • A. M. Aliev
    • 1
  • Sh. B. Abdulvagidov
    • 1
  • A. B. Batdalov
    • 1
  • O. Yu. Gorbenko
    • 2
  1. 1.Institute of Physics of the Dagestan Scientific Center of the Russian Academy of SciencesRussia
  2. 2.M. V. Lomonosov Moscow State UniversityMoscow

Personalised recommendations