Advertisement

Russian Physics Journal

, Volume 49, Issue 12, pp 1334–1343 | Cite as

Defects in the GaAs and InGaAs layers grown by low-temperature molecular-beam epitaxy

  • L. G. Lavrentieva
  • M. D. Vilisova
  • I. A. Bobrovnikova
  • I. V. Ivonin
  • V. V. Preobrazhenskii
  • V. V. Chaldyshev
Article
  • 79 Downloads

Abstract

The problem of defect formation in the GaAs and InGaAs layers grown by low-temperature molecular-beam epitaxy is discussed. The effect of growth conditions (temperature and flux ratio between the elements of groups III and V) on the morphology of growth surface, internal structure, type, and concentration of electrically-and optically active defects is analyzed. A comparison is made between the defect formation processes occuring during the epitaxial growth and post-growth annealing of the layers.

Keywords

Arsenic GaAs Flux Ratio Antisite Defect Intrinsic Point Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. W. Smith, A. R. Calawa, Chang-Lee Chen, et al., IEEE Electron Devices Lett., 9, 77–79 (1988).CrossRefGoogle Scholar
  2. 2.
    M. Kaminska, Z. Liliental-Weber, E. R. Weber, et al., Appl. Phys. Lett., 54, 1881–1883 (1989).CrossRefADSGoogle Scholar
  3. 3.
    A. C. Warren, J. M. Woodal, J. L. Freeouf, et al., Appl. Phys. Lett., 57, 1331–1333 (1990).CrossRefADSGoogle Scholar
  4. 4.
    D. C. Look, D. C. Valters, M. O. Manasreh, et al., Phys. Rev. B., 42, 3578–3580 (1990).CrossRefADSGoogle Scholar
  5. 5.
    Kin Man Yu, M. Kaminska, Z. Liliental-Weber, et al., J. Appl. Phys., 72, No. 7, 2850–2856 (1992).CrossRefADSGoogle Scholar
  6. 6.
    N. A. Bert, A. I. Veinger, M. D. Vilisova, et al., Fiz. Tverd. Tela, 35, No. 10, 2609–2625 (1993).Google Scholar
  7. 7.
    I. A. Bobrovnikova, A. I. Veinger, M. D. Vilisova, et al., Russ. Phys. J., No. 9, 885–893 (1998).Google Scholar
  8. 8.
    M. D. Vilisova, I. V. Ivonin, L. G. Lavrentieva, et al., Fiz. Tekh. Poluprovodn., 33, No. 8, 824–829 (1999).Google Scholar
  9. 9.
    I. A. Bobrovnikova, M. D. Vilisova, I. V. Ivonin, et al., Russ. Phys. J., No. 10, 816 (2000).Google Scholar
  10. 10.
    M. D. Vilisova, A. E. Kunitsyn, L. G. Lavrent’eva, et al., Fiz. Tekh. Poluprovodn., 36, No. 9, 1025–1030 (2002).Google Scholar
  11. 11.
    B. R. Semyagin, M. A. Putyato, V. V. Prebrazhenskii, et al., Proc. 8th Russ. Conf. on Gallium Arsenide and III–V Semiconductor Compounds, Tomsk, 2002.Google Scholar
  12. 12.
    M. D. Vilisova, I. V. Ivonin, L. G. Lavrent’eva, et al., Izv. Vyssh. Uchebn. Zaved. Mater. Electronn. Tekh., No. 4, 44–47 (2002).Google Scholar
  13. 13.
    Ivonin I., Subatch S., Gutakovskii, et al., Proc. 5 Multinat. Congr. Electron Micr., Lecce (Italy), Rinton Press, Prinston, 2001.Google Scholar
  14. 14.
    M. D. Vilisova, L. L. Devyat’yarova, I. V. Ivonin et al., Proc. 8th Russ. Conf. On Gallium Arsenide and III–V Semiconductor Compounds, Tomsk, 2002.Google Scholar
  15. 15.
    M. D. Vilisova, I. V. Ivonin, L. G. Lavrent’eva, et al., Proc. 8th Russ. Conf. On Gallium Arsenide and III–V Semiconductor Compounds, Tomsk, 2002.Google Scholar
  16. 16.
    L. G. Lavrent’eva, M. D. Vilisova, V. V. Preobrazhenskii, et al., Russ. Phys. J., No. 8, 735 (2002).Google Scholar
  17. 17.
    A. Suda and N. Otsuka, Surf. Sci., 458, 162–173 (2000).CrossRefGoogle Scholar
  18. 18.
    M. Missous and S. O’Hagan, J. Appl. Phys., 75, No. 7, 3396–3401 (1994).CrossRefADSGoogle Scholar
  19. 19.
    S. O’Hagan and M. Missous, J. Appl. Phys., 75, No. 12, 7835–7841 (1994).CrossRefADSGoogle Scholar
  20. 20.
    M. Missous and S. O’Hagan, J. Cryst. Growth, 175/176, 197–202 (1997).CrossRefGoogle Scholar
  21. 21.
    M. G. Mil’vidskii and V. B. Osvenskii, Structural Defects in Single-Crystal Semiconductors [in Russian], Metallurgiya, Moscow, 1984.Google Scholar
  22. 22.
    D. T. J. Hurle, J. Appl. Phys., 85, No. 10, 6957–7022 (1999).CrossRefADSGoogle Scholar
  23. 23.
    X. Liu, A. Prasad, and W. M. Chen, Appl. Phys. Lett., 65, No. 23, 3002–3004 (1994).CrossRefADSGoogle Scholar
  24. 24.
    X. Liu, A. Prasad, J. Nishio, et al., Appl. Phys. Lett., 67, No. 2, 279–281 (1995).CrossRefADSGoogle Scholar
  25. 25.
    M. Luysberg, H. Sohn, A. Prasad, et al., J. Appl. Phys., 83, No. 1, 561–565 (1998).CrossRefADSGoogle Scholar
  26. 26.
    J. Betko, M. Morvic, J. Novak, et al., Appl. Phys. Lett., 69, No. 17, 2563–2565 (1996).CrossRefADSGoogle Scholar
  27. 27.
    J. Gebauer, F. Borner, R. Krause-Rehberg, et al., J. Appl. Phys., 87, No. 12, 8368–8379 (2000).CrossRefADSGoogle Scholar
  28. 28.
    T. Laine, K. Saarinen, Hautojarvi, et al., J. Appl. Phys., 86, No. 4, 1888–1897 (1999).CrossRefADSGoogle Scholar
  29. 29.
    N. D. Zakharov, Z. Liliental-Weber, W. Swider, et al., Appl. Phys. Lett., 63, 2809–2811 (1993).CrossRefADSGoogle Scholar
  30. 30.
    H. Kunzel, J. Bottcher, R. Gibis, et al., Appl. Phys. Lett., 61, 1347–1349 (1992).CrossRefADSGoogle Scholar
  31. 31.
    R. A. Metzger, A. S. Brown, L. G. McCray, et al., J. Vac. Technol., B11, No. 3, 798–801 (1993).CrossRefGoogle Scholar
  32. 32.
    Yu. S. Gordeev, V. M. Mikushkin, S. Yu. Nikonov, et al., Fiz. Tverd. Tela, 38, No. 11, 3299–3307 (1996).Google Scholar
  33. 33.
    L. Hollan and C. Shiller, J. Cryst. Growth, 22, No. 3, 175–180 (1974).CrossRefGoogle Scholar
  34. 34.
    M. Gandouzi, J. C. Bourgoin, L. El Mir, et al., J. Cryst. Growth, 234, 279–284 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • L. G. Lavrentieva
    • 1
  • M. D. Vilisova
    • 2
  • I. A. Bobrovnikova
    • 1
  • I. V. Ivonin
    • 1
  • V. V. Preobrazhenskii
    • 3
  • V. V. Chaldyshev
    • 4
  1. 1.Tomsk State UniversityTomsk
  2. 2.V. D. Kuznetsov Siberian Physical Technical InstituteRussia
  3. 3.Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of SciencesRussia
  4. 4.A. F. Ioffe Physical Technical InstituteRussia

Personalised recommendations