Russian Physics Journal

, Volume 49, Issue 4, pp 402–410 | Cite as

New energy-momentum tensor in relativistic gravitation theory

  • V. A. Zhelnorovich


Expressions for a new canonical energy-momentum tensor and an internal angular momentum of the gravitational field are derived in the context of bimetric relativistic gravitation theory based on the variational principle. A system of relations for the determining parameters of the gravitational field and matter involving, in particular, the continuity condition for the energy-momentum flux density is formulated on the discontinuity surface.


Gravitational Field Minkowski Space Riemannian Space Discontinuity Surface Determine Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Kohler, Z. Phys., 131, No. 4, 571 (1952).MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    M. Kohler, Z. Phys., 134, No. 3, 286 (1952).MathSciNetGoogle Scholar
  3. 3.
    N. Rozen, Ann. Phys., 22, No. 1, 1 (1963).CrossRefADSGoogle Scholar
  4. 4.
    P. G. O. Freund, A. Maheshwari, and E. Schonberg, Astrophys. J., 157, 857 (1969).CrossRefADSGoogle Scholar
  5. 5.
    A. A. Logunov, Lectures on the Theory of Relativity and Gravitation: Modern Analysis of the Problem [in Russian], Nauka, Moscow (1987).Google Scholar
  6. 6.
    A. A. Logunov and M. A. Mestvirishvili, Relativistic Gravitation Theory [in Russian], Nauka, Moscow (1989).Google Scholar
  7. 7.
    V. A. Zhelnorovich, Gravit. Cosmol., 11, No. 4 (2005).Google Scholar
  8. 8.
    H. A. Lorentz, Amst. Akad. Versl., 25, 468 (1916).MATHGoogle Scholar
  9. 9.
    A. Einstein, Sitzb. Kgl. Preuss. Akad. Wiss. Berlin., 2, 1111 (1916).Google Scholar
  10. 10.
    L. D. Landau and E. M. Lifshits, Field Theory [in Russian], Nauka, Moscow (1988).MATHGoogle Scholar
  11. 11.
    V. A. Zhelnorovich and L. I. Sedov, Prikl. Mat. Mekh., 42, No. 5, 771 (1978).MATHMathSciNetGoogle Scholar
  12. 12.
    V. A. Zhelnorovich, Spinor Theory and Its Applications [in Russian], Avgust-Print, Moscow (2001).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. A. Zhelnorovich
    • 1
  1. 1.Institute of Mechanics at M. V. Lomonosov Moscow State UniversityRussia

Personalised recommendations