Russian Physics Journal

, Volume 48, Issue 12, pp 1287–1293 | Cite as

Multitrace matrix model in the parquet approximation

  • A. O. Shishanin


The planar parquet approximation is examined for the simplest two-trace matrix model. The propagator, four-point vertex, and values of critical coupling constants obtained with the help of the parquet equations and solution of the planar equation are compared.


Matrix Model Planar Equation Critical Coupling Critical Coupling Constant Parquet Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Ginsparg and G. Moore G. Lectures on 2D String Theory, Cambridge University Press (1993).Google Scholar
  2. 2.
    F. David, Nucl. Phys., B257, 45–48, 543–558 (1985).CrossRefADSGoogle Scholar
  3. 3.
    S. Das, A. Dhar, A. Sengupta, and S. Wadia, Mod. Phys. Lett., A5, 1041 (1990).ADSMathSciNetGoogle Scholar
  4. 4.
    E. Brezin, C. Itzykson, G. Parizi, and J. B. Zuber, Commun. Math. Phys., 59, 35 (1978).CrossRefADSGoogle Scholar
  5. 5.
    E. Brezin and S. Hikami, J. Phys., A12, 759 (1979).ADSGoogle Scholar
  6. 6.
    I. Ya. Aref’eva and A. P. Zubarev, Phys. Lett., B386, 258 (1996).ADSGoogle Scholar
  7. 7.
    I. T. Dyatlov, V. V. Sudakov, and K. A. Ter-Martirosyan, Zh. Eksp. Teor. Fiz., 32, 767 (1957).Google Scholar
  8. 8.
    A. Shishanin and I. Ziyatdinov, J. High Energy Phys., 0307, 032 (2003).Google Scholar
  9. 9.
    I. Ziyatdinov, in: Proc. 13th Int. Seminar on High Energy Physics. Quarks-2004, Pushkinskie Gory (2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. O. Shishanin
    • 1
  1. 1.Moscow State Industrial UniversityRussia

Personalised recommendations