Russian Physics Journal

, Volume 48, Issue 11, pp 1182–1187 | Cite as

Two-photon—induced fluorescence and electronic structure of substituted dicyanomethylene pyrans in solutions under femtosecond excitation

  • Yu. P. Meshalkin
  • V. A. Svetlichnyi
  • S. S. Chunosova
  • T. N. Kopylova


The method of two-quantum etalon is used to determine the two-photon absorption cross sections of eight dicyanomethylene (DCM) pyran dyes (DCM derivatives). Measurements of two-photon absorption of femtosecond Ti: sapphire-laser (λ = 800 nm, τ = 100 fs, and f = 89 MHz) radiation have been carried out. The nature of nonlinear excitation has been confirmed by the dependence of the fluorescence intensity on the excitation radiation intensity, which is close to a square-law one. Based on the measured two-photon absorption cross sections, the sizes of delocalized π-electronic clouds of DCM dye molecules with different substitutes are estimated in solvents with different polarity parameters. It is demonstrated that an increase in the polarity parameter of the solvent causes the two-photon absorption cross sections and sizes of delocalized π-electronic clouds of DCM, DCM-doa, DCM-17, DCM-5M, and DCM-11 dyes to increase. It is demonstrated that the size of the delocalized π-electronic cloud and the quantum fluorescence yield of the DCM-ul dye decrease with increasing polarity of the solvent despite the growth of the two-photon absorption cross section.


Radiation Fluorescence Intensity Pyran Radiation Intensity Absorption Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. M. W. French and J. R. Taylor, Appl. Phys., B41, 53–56 (1986).ADSGoogle Scholar
  2. 2.
    M. Berggren, A. Dobalapur, R. E. Slusher, et al., Appl. Phys. Lett., 72, 410–412 (1998).CrossRefADSGoogle Scholar
  3. 3.
    J. S. Batchelder, A. H. Zewail, and A. H. Cole, Appl. Opt., 20, 3733–3750 (1981).ADSGoogle Scholar
  4. 4.
    S. W. Pyo, H. S. Lee, J. S. Kim, et al., Mol. Cryst. Liq. Cryst., 349, 417–422 (2000).Google Scholar
  5. 5.
    L. S. Hung and S. H. Chen, Mater. Sci. Eng., R39, 143–147 (2002).Google Scholar
  6. 6.
    S. K. Pal, D. Mandal, D. Sakul, et al., J. Phys. Chem., B105, 1438–1441 (2001).Google Scholar
  7. 7.
    S. L. Bondarev, V. N. Knyukshto, V. I. Stepuro, et al., Zh. Prikl. Spektrosk., 71, No. 2, 179–186 (2004).Google Scholar
  8. 8.
    Zhou Yu-Fang, Liu Y.-Jun, Zhao X., Jiang M.-Hu, J. Mol. Struct. (Theochem.), 545, 61–65 (2001).Google Scholar
  9. 9.
    V. A. Svetlichnyi, Opt. Atm. Okeana, 18, No. 4, 321–324 (2005).Google Scholar
  10. 10.
    S. S. Chunosova, V. A. Svetlichnyi, and Yu. P. Meshalkin, Kvant. Elektron., 35, No. 5, 415–418 (2005).Google Scholar
  11. 11.
    F. P. Scafer and W. Schmidt, IEEE J. Quant. Electron., QE2, No. 9, 357–360 (1966).Google Scholar
  12. 12.
    Yu. P. Meshalkin, Opt. Spektrosk., 84, 217–221 (1998).Google Scholar
  13. 13.
    Yu. P. Meshalkin, V. A. Svetlichnyi, A. V. Reznichenko, et al., Kvant. Elektron., 33, No. 9, 803–806 (2003).Google Scholar
  14. 14.
    C. Reichardt, in: Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH Verlag Gmbh and Co. KGaA, Weinheim (2003), pp. 472–474.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Yu. P. Meshalkin
    • 1
    • 2
  • V. A. Svetlichnyi
    • 3
  • S. S. Chunosova
    • 4
  • T. N. Kopylova
    • 3
  1. 1.Novosibirsk State Technical UniversityRussia
  2. 2.State Institution Scientific-Research Institute of Physiology of the Siberian Branch of the Russian Academy of Medical SciencesRussia
  3. 3.V. D. Kuznetsov Siberian Physical-Technical Institute at Tomsk State UniversityRussia
  4. 4.Institute of Laser Physics of the Siberian Branch of the Russian Academy of SciencesRussia

Personalised recommendations