Advertisement

Russian Physics Journal

, Volume 48, Issue 7, pp 694–700 | Cite as

Stochastic Resonance in Finely Dispersed Magnets: Influence of a Constant Magnetic Field Applied along the Direction of Easy Magnetization

  • A. G. Isavnin
Physics of Magnetic Phenomena

Abstract

The dynamic susceptibility of an uniaxial single-domain iron particle is calculated under conditions of stochastic resonance as a function of the strength of an additional constant magnetic field applied along the direction of easy magnetization. Calculations are performed for the model of discrete orientations using the governing equation for the Kramers above-the-barrier transition rates of the magnetic moment vector of the particle. It is demonstrated that the presence of this constant field that breaks the symmetry of the bistable potential results in a decrease in the magnitude of the system response to an external periodic perturbation.

Keywords

Governing Equation Field Apply Transition Rate Magnetic Field Apply Stochastic Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    B. McNamara and K. Wiesenfeld, Phys. Rev., A39, 4854–4869 (1989).ADSGoogle Scholar
  2. 2.
    V. S. Anishchenko, A. B. Neiman, F. Moss, and L. Shimanskii-Gaier, Usp. Fiz. Nauk, 169, 7–38 (1999).ADSGoogle Scholar
  3. 3.
    A. I. Gusev, Usp. Fiz. Nauk, 168, 55–83 (1998).CrossRefGoogle Scholar
  4. 4.
    E. K. Sadykov and A. G. Isavnin, Fiz. Tverd. Tela, 36, 3473–3475 (1994).Google Scholar
  5. 5.
    Yu. L. Raikher and V. I. Stepanov, Phys. Rev., B52, 3493–3498 (1995).ADSGoogle Scholar
  6. 6.
    A. N. Grigorenko, V. I. Konov, and P. I. Nikitin, Pis'ma Zh. Eksp. Teor. Fiz., 52, 1182–1185 (1990).Google Scholar
  7. 7.
    E. K. Sadykov, A. G. Isavnin, and A. B. Boldenkov, Fiz. Tverd. Tela, 40, 516–518 (1998).Google Scholar
  8. 8.
    A. G. Isavnin, Fiz. Tverd. Tela, 43, 1216–1219 (2001).Google Scholar
  9. 9.
    E. K. Sadykov and A. G. Isavnin, Fiz. Tverd. Tela, 38, 2104–2112 (1996).Google Scholar
  10. 10.
    A. G. Isavnin, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 11, 73–77 (2002).Google Scholar
  11. 11.
    G. N. Belozerskii, K. A. Makarov, and B. S. Pavlov, Vestn. Leningr. Gosud. Univ., 4, 12–18 (1982).Google Scholar
  12. 12.
    W. F. Brown, Phys. Rev., 130, 1677–1686 (1963).ADSGoogle Scholar
  13. 13.
    P. Jung and P. Hanggi, Phys. Rev., A44, 8032–8042 (1991).ADSGoogle Scholar
  14. 14.
    E. K. Sadykov and A. I. Skvortsov, Fiz. Tverd. Tela, 33, 2725–2732 (1991).Google Scholar
  15. 15.
    I. Abu-Aljarayesh, A. Bayrakdar, A. Yusuf, and H. Abu-Satia, J. Appl. Phys., 73, 6970–6972 (1993).CrossRefADSGoogle Scholar
  16. 16.
    E. K. Sadykov, A. I. Skvortsov, Yu. A. Antonov, and A. G. Isavnin, Izv. Ross. Akad. Nauk, Ser. Fizich., 58, 101–104 (1994).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. G. Isavnin
    • 1
  1. 1.Kama State Polytechnic InstituteKamaRussia

Personalised recommendations