Russian Physics Journal

, Volume 47, Issue 11, pp 1139–1146 | Cite as

Fractal nature of the dislocation structure of low-alloyed steel after controlled rolling

  • V. V. Usov
  • N. M. Shkatulyak


Methods of x-ray diffractometry and transmission electron microscopy are used to study the crystallographic texture and dislocation structure of low-alloyed steel after controlled rolling. It is demonstrated that the formation of crystallographic texture and the corresponding dislocation structure are interrelated. These processes are a manifestation of different sides of one phenomenon of developed plastic strain. The fractal dimensions of cellular dislocation structure boundaries of the main texture components in deformed steel are determined using the multiple grid method.


Transmission Electron Microscopy Plastic Strain Fractal Dimension Main Texture Dislocation Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Trefilov, S. A. Firsov, A. Lyuft,and K. Shlyaubitts, in: Problems of Solid State Physics and Materials Science [in Russian], Nauka, Moscow (1976), pp. 97–112.Google Scholar
  2. 2.
    N. A. Koneva, D. V. Lychagin, L. A. Teplyakova, and É. V. Kozlov, in: Theoretical and Experimental Investigations of Disclinations [in Russian], Publishing House of Physical-Technical Institute, Leningrad (1986), pp. 116–126.Google Scholar
  3. 3.
    V. A. Likhachev, V. E. Panin, E. É. Zasimchuk, et al., in: Cooperative Deformation Processes and Deformation Localization [in Russian], Naukova Dumka, Kiev (1989), pp. 58–100.Google Scholar
  4. 4.
    V. E. Panin, V. A. Likhachev, and Yu. V. Grinyaev, Structural Levels of Deformation of Solids [in Russian], Nauka, Novosibirsk (1985).Google Scholar
  5. 5.
    V. V. Usov and A. L. Dugar’, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 5, 43–46 (2001).Google Scholar
  6. 6.
    E. É. Zasimchuk, Yu. G. Gordienko, and R. G. Gontareva, Metallofiz. Noveish. Tekhnol., 22, No.4, 71–76 (2001).Google Scholar
  7. 7.
    V. S. Ivanova, A. S. Balankin, I. Zh. Bunin, and A. A. Oksagoev, Synergetics and Fractals in Materials Science [in Russian], Nauka, Moscow (1994).Google Scholar
  8. 8.
    V. K. Potemkin and A. Peshkov, Itogi Nauki Tekh. VINITI, 14, 3–35 (1986).Google Scholar
  9. 9.
    V. V. Usov, Metallofiz. Noveish. Tekhnol., 16, No.3, 85–88 (1994).Google Scholar
  10. 10.
    M. M. Borodkina and É. N. Spektor, X-ray Analysis of Textures in Metals and Alloys [in Russian], Metallurgiya, Moscow (1982).Google Scholar
  11. 11.
    S. N. Kaverina, V. A. Kotko, Yu. A. Perlovich, et al., Metallofizika 50, No. 50, 40–47 (1974).Google Scholar
  12. 12.
    V. V. Usov, Fractal Nature of Anisotropy in Physical Properties of Deformed Metallic Systems with the Cubic Lattice [in Russian], TÉS, Odessa (2001).Google Scholar
  13. 13.
    N. Yu. Zolotarevskii, V. V. Rybin, and I. M. Zhukovskii, Fiz. Met. Metalloved., 67, No.2, 221–232 (1989).Google Scholar
  14. 14.
    V. V. Rybin, Severe Plastic Strains and the Destruction of Metals [in Russian], Metallurgiya, Moscow (1986).Google Scholar
  15. 15.
    V. V. Rybin, N. Yu. Zolotarevskii, and I. M. Zhukovskii, Fiz. Met. Metalloved., 69, No.1, 5–26 (1990).Google Scholar
  16. 16.
    A. Bunde and S. Havlin, Fractals and Disordered Systems, Springer, Heidelberg (1991).Google Scholar
  17. 17.
    A. I. Olemskoi and A. Ya. Flat, Usp. Fiz. Nauk, 163, No.12, 1–50 (1993).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • V. V. Usov
    • 1
  • N. M. Shkatulyak
    • 1
  1. 1.K. D. Ushinskii South-Ukrainian State Pedagogical UniversityUkraine

Personalised recommendations