Russian Physics Journal

, Volume 47, Issue 10, pp 1015–1025 | Cite as

Special features of the order-disorder phase transformation and the role of associated antiphase boundaries

  • S. V. Starenchenko
  • É. V. Kozlov


Experimental investigations of the states of long-range order in alloys with the L12, L12(M), L12(MM), and D1a superlattices are discussed. The results obtained enable basic mechanisms involved in the thermal order-disorder transformation to be found and demonstrate an important role of antiphase boundaries in this transition.


Phase Transformation Experimental Investigation Basic Mechanism Antiphase Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Krivoglaz and A. A. Smirnov, The Theory of Ordering Alloys [in Russian], Fizmatgiz., Moscow (1957).Google Scholar
  2. 2.
    N. M. Matveeva and É. V. Kozlov, Ordered Phases in Metallic Systems [in Russian], Nauka, Moscow (1989).Google Scholar
  3. 3.
    S. V. Starenchenko and V. A. Starenchenko, Vestn. Tamb. Un-ta, Ser. Yestestv. i Tekhn., 3, No.3, 233–236 (1998).Google Scholar
  4. 4.
    L. E. Popov, É. V. Kozlov, and N. S. Golosov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 2, 55–66 (1966).Google Scholar
  5. 5.
    S. V. Starenhenko, Candidate’s Dissertation in Physical and Mathematical Sciences, Tomsk Institute of Engineering and Building, Tomsk (1981), 262 pp.Google Scholar
  6. 6.
    A. M. Glezer and B. V. Molotilov, Disordering and Deformation in Iron Alloys [in Russian], Metallurgiya, Moscow (1984).Google Scholar
  7. 7.
    N. S. Golosov and B. V. Dudka, The Structural Mechanism of Phase Transformations of Metals and Alloys [in Russian], Nauka, Moscow (1976).Google Scholar
  8. 8.
    A. A. Smirnov, The Molecular-Kinetic Theory of Metals [in Russian], Nauka, Moscow (1966).Google Scholar
  9. 9.
    A. G. Khachaturyan, The Theory of Phase Transitions and the Structure of Solid Solutions [in Russian], Nauka, Moscow (1974).Google Scholar
  10. 10.
    A. Taylor, X-Ray Metallography [Russian translation], Metallurgiya, Moscow (1965).Google Scholar
  11. 11.
    W. L. Bragg and E. J. Williams, Proc.Royal Soc., A 145, No.a 855, 699–730 (1934).Google Scholar
  12. 12.
    A. Gangulee and S. C. Moss, J. Appl. Cryst., 1, No.1, 61–67 (1968).Google Scholar
  13. 13.
    J. A. Westrook (ed.), Intermetallic Compounds, John Wiley & Sons, Inc., New York — London — Sydney (1967).Google Scholar
  14. 14.
    É. V. Kozlov and S. V. Starenchenko, Phys. Met. Metalloved, 48, No.6, 1220–1226 (1979).Google Scholar
  15. 15.
    M. Tachiki and K. Teramoto, J. Phys. Chem. Solids, 27, 335–348 (1967).Google Scholar
  16. 16.
    H. Iwasaki and S. Ogawa, J. Phys. Soc. Jap., 22, No.1, 158–164 (1967).Google Scholar
  17. 17.
    B. L. Averbach et al. (eds), Fracture, in: Proc. Int. Conf., April 12–16, 1959, Swampscott, Massachusetts (1959).Google Scholar
  18. 18.
    S. S. Gorelik, L. N. Rastorguev, and Yu. A. Skakov, Radiographic and Electron-Optical Analyses [in Russian], Metallurgiya, Moscow (1970).Google Scholar
  19. 19.
    P. Wright and K. T. Coddard, Acta. Met., 7, 757–761 (1959).Google Scholar
  20. 20.
    B. W. Baterman, J. Appl. Phys., 28, No.5., 556–561 (1957).Google Scholar
  21. 21.
    S. V. Starenchenko and V. A. Starenchenlo, Proc. Int. Conf. Solid-Solid Phase Transformation’99 (JIMIC-3), M. Koiwa, K. Otsuka, and T. Miyazaki (eds.), The Japan Institute of Metals (1999), pp. 349–352.Google Scholar
  22. 22.
    R. W. Cahn, Acta Met. Sinica, 8, Nos. 4–6, 261–272 (1995).Google Scholar
  23. 23.
    X. Schubert, B. Kiefer, M. Wilkens, and R. Haufler, Z. Metallk, 46, 692–715 (1955).Google Scholar
  24. 24.
    D. Broddin, G. Van Tendeloo, and S. Amerinckx, J. Phys. Condens. Matter, 2, 3459–3477 (1990).Google Scholar
  25. 25.
    C. Leroux, A. Loiseau, M. C. Cadeville, et al., J. Phys. Condens. Matter, No. 2, 3479–3495 (1990).Google Scholar
  26. 26.
    C. Ricolleau, A. Loiseau, F. Ducastelle, and R. Caudron, Phys. Rev. Lett., 68, No.24, 3591–3594 (1992).Google Scholar
  27. 27.
    S. V. Starenchenko, Doctoral Thesis in Physical and Mathematical Sciences, Tomsk State University of Architecture and Building, Tomsk (2003), 592 pp.Google Scholar
  28. 28.
    M. Ohno and T. Mohri, Mater. Transactions, 42, No.10, 1–9 (2001).Google Scholar
  29. 29.
    M. Ohno and T. Mohri, Mat. Scin. Eng., A312, 50–56 (2001).Google Scholar
  30. 30.
    T. Mohri, G. Ichikawa, and T. Suzuki, J. Alloys and Compounds, 247, 98–103 (1997).Google Scholar
  31. 31.
    O. V. Andrukhova, N. V. Lomskikh, N. M. Gurova, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., 43, No.11, Supplement, 5–10 (2000).Google Scholar
  32. 32.
    N. M. Gurova, O. V. Andrukhova, N. V. Lomskikh, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., No. 11,Supplement, 11–14 (2000).Google Scholar
  33. 33.
    O. V. Andrukhova, N. M. Gurova, N. V. Lomskikh, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., No. 8,Supplement, 30–36 (2002).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • S. V. Starenchenko
    • 1
  • É. V. Kozlov
    • 1
  1. 1.Tomsk State University of Architecture and BuildingTomsk

Personalised recommendations