Russian Journal of Nondestructive Testing

, Volume 41, Issue 4, pp 207–217 | Cite as

Investigation of the Effects of Crystallographic Anisotropy and the Domain Structure of Ferromagnets on the Parameters of Double Electromagnetic-Acoustic Transformation

  • E. S. Gorkunov
  • Yu. N. Dragoshanskii
  • M. N. Solomein
  • V. A. Barkhatov
  • S. M. Zadvorkin
Magnetic and Eddy Current Methods


The effects of crystallographic anisotropy and the domain structure on the parameters of the double electromagnetic-acoustic transformation (EMAT) are investigated in Fe-3% Si single crystals. A relationship is found between the magnitude of an EMAT signal and the quantity and activity of 90° domain boundaries, which determine the magnetostriction deformation of a crystal lattice. This relationship can be used as a basis for a method of nondestructive testing of elastic moduli and their related parameters. The possibility of determining the elastic moduli of ferromagnetic materials by parameters of the EMAT signal is shown.


Anisotropy Elastic Modulus Structural Material Crystal Lattice Domain Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Il’in, I.V. and Kharitonov, A.V., A Mechanism of Exciting Surface Waves in Ferromagnetic Metals by Electromagnetic-Acoustic Method, Izv. LETI, 1979, no. 252, pp. 47–52.Google Scholar
  2. 2.
    Kaule, W., Magneto-Strictive Ultrasonic Testing of Materials in Proc. 4th International Conf. NDT, London: Butterworth, 1964, pp. 291–294.Google Scholar
  3. 3.
    Komarov, V.A. and Shakshin, N.I., Studying Efficiency of Continued Electromagnetic-Acoustic Transformation in Ferromagnetic Metals with the Normal Skin Effect, Fiz. Met. Metalloved., 1977, vol. 43, pp. 538–544.Google Scholar
  4. 4.
    Il’in, I.V., Investigation of Electromagnetic-Acoustic Method of Transmitting and Receiving Rayleigh Waves in Ferromagnets, Cand. Sci. Dissertation, Leningrad, 1979.Google Scholar
  5. 5.
    Zaikova, V.A. and Shur, Ya. S., Dependence of the Shape of Magnetostriction Curves of Silicon-Iron Crystals on the Domain Structure Behavior upon Magnetization, Fiz. Met. Metalloved., 1964, vol. 18, pp. 349–358.Google Scholar
  6. 6.
    Dragoshanskii, Yu.N. and Sheiko, L.M., Effect of Plane Tensions on the Domain Structure and Magnetic Properties of Silicon Iron, Izv. Akad. Nauk SSSR, Ser. Fiz., 1985, vol. 49, no.8, pp. 1568–1572.Google Scholar
  7. 7.
    Sasaki, T. and Imamura, M., Mangetostrictive Properties of Individual Grain-Oriented 3% Fe-Si, IEEE Trans. Magn., 1981, vol. MAG-17, no.6, pp. 2866–2868.CrossRefGoogle Scholar
  8. 8.
    Kuppers, D. and Kranz, J., Coercivity and Domain Structure of Silicon-Iron Single Crystals, J. Appl. Phys., 1968, vol. 39, no.2, pp. 608–609.Google Scholar
  9. 9.
    Banks, P.I., On the Influence of Normal Stresses on Magnetostriction in (110)[001] Silicon-Iron Sheet, IEEE Trans. Magn., 1981, vol. MAG-13, no.3, pp. 1000–1005.Google Scholar
  10. 10.
    Chikaura, Y., Mori, T., and Nagakura, S., Effect of Mangetostriction on the Orientation of 90° Mangetic Domain Wall in Iron, J. Phys. Soc. Jpn., 1973, vol. 35, no.2, pp. 608–609.Google Scholar
  11. 11.
    Nozawa, T., Mizogami, M., Mogi, H., and Matsuo, Y., Magnetic Properties and Dynamic Domain Behavior in Grain-Oriented 3%Si-Fe, IEEE Tans. Magn., 1996, vol. 32, pp. 572–589.CrossRefGoogle Scholar
  12. 12.
    Komarov, V.A. and Shakshin, N.I., Electromagnetic-Acoustic Generation in Polycrystalline Nonferromagnetic Metals upon Continuous Radiation of Electromagnetic Field by Inductive Transducers, Fiz. Met. Metalloved., 1976, vol. 42, no.4, pp. 716–722.Google Scholar
  13. 13.
    Chechernikov, V.I., Magnitnye Izmereniya (Magnetic Measurements), Moscow: Izd. Mosk. Gos. Univ., 1963.Google Scholar
  14. 14.
    Hubert, A. and Schafer, R., Magnetic Domains. Analysis of Mangetic Microstructures, Berlin: Springer, 1998.Google Scholar
  15. 15.
    Krishtal, M.A. and Nikitin, K.E., Phase Gage for the Propagation Velocity of Surface Waves, Defektoskopiya, 1979, no. 2, pp. 51–55.Google Scholar
  16. 16.
    Barkhatov, V.A., Elastic Properties of Textured BCC and HCP-Structured Polycrystals, Cand. Sci. Dissertation, Sverdlovsk: Ural. Polytech. Inst., 1990.Google Scholar
  17. 17.
    Shur, Ya.S. and Dragoshanskii, Yu. N., On the Form of Closure Domains within Silicon-Iron Crystals, Fiz. Met. Metalloved., 1966, vol. 22, no.5, pp. 702–710.Google Scholar
  18. 18.
    Dragoshanskii, Yu.N. and Shur, Ya. S., On the Formation of the Domain Structure of Silicon-Iron Crystals, Fiz. Met. Metalloved., 1966, vol. 21, no.5, pp. 678–687.Google Scholar
  19. 19.
    Filippov, B.N., Zhakov, S.V., Dragoshanskii, Yu.N., Starodubtsev, Yu. N., and Lykov, E.L., On the Theory of Domain Structures in Three-Axial Ferromagnetic Crystals, Fiz. Met. Metalloved., 1976, vol. 42, no.2, pp. 260–277.Google Scholar
  20. 20.
    Zhakov, S.V., Filippov, B.N., and Dragoshanskii, Yu.N., Domain Structure and Magnetization Processes in Three-Axial Single Crystals in the Field Applied at an Angle to the Easy Magnetization Direction, Fiz. Met. Metalloved., 1979, vol. 47, no.2, pp. 310–318.Google Scholar
  21. 21.
    Gorkunov, E.S., Bartenev, O.A., and Khamitov, V.A., Magnetoacoustic Emission in Silicon-Iron Single Crystals, Izv. Vyssh. Ucheb. Zaved., Ser. Fiz., 1986, no. 1, pp. 227–240.Google Scholar
  22. 22.
    Shur, Ya.S. and Abel’s, V.R., Investigation of Magnetization Processes in Silicon-Iron Crystals, Fiz. Met. Metalloved., 1958, vol. 4, no.3, pp. 556–563.Google Scholar
  23. 23.
    Boltachev, V.D., Golovshchikova, I.V., Ermakov, A.E., and Dragoshanskii, Yu.N., Barkhausen Effect and Magnetoacoustic Emission in Fe-Al, Fe-Co, and Fe-Si Alloys, Fiz. Met. Metalloved., 1992, no. 12, pp. 59–67.Google Scholar
  24. 24.
    Barkhatov, V.A., Determining Elastic Moduli by a Resonance Technique in Self-Oscillation Regime, Defektoskopiya, 1995, no. 7, pp. 34–41.Google Scholar
  25. 25.
    Kravchenko, D.F., Kurganov, V.A., Spets, P.D., and Tursunov, D.A., A Setup for Measuring Elastic Moduli and Logarithmic Decrement of Materials with Low Mechanical Q-Factor, Zavod. Lab., 1982, no. 5, pp. 76–78.Google Scholar
  26. 26.
    Ashkenazi, E.K., Ganov, E.V., Anizotropiya konstruktsionnykh materialov. Spravochnik (Handbook on the Anisotropy of Structural Materials), Leningrad: Mashinostroenie, 1980.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • E. S. Gorkunov
    • 1
    • 2
  • Yu. N. Dragoshanskii
    • 1
    • 2
  • M. N. Solomein
    • 1
    • 2
  • V. A. Barkhatov
    • 1
    • 2
  • S. M. Zadvorkin
    • 1
    • 2
  1. 1.Institute of Engineering Science, Ural DivisionRussian Academy of SciencesYekaterinburgRussia
  2. 2.Institute of Metal Physics, Ural DivisionRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations