Advertisement

Russian Journal of Nondestructive Testing

, Volume 40, Issue 10, pp 679–688 | Cite as

An efficient approach to approximation and practical application of DGS diagrams

  • Yu. B. Sviridov
  • A. S. Gaburov
  • S. V. Veremeenko
  • A. A. Pokladov
Acoustic methods
  • 23 Downloads

Abstract

A nonstandard experimental and mathematical approach to the development of analytical and numerical multidimensional approximations for DGS diagrams is proposed. This method features sufficiently high accuracy, versatility, and reliability for different types of piezoelectric probes (PPs) and test objects (TOs). The efficiency of the approach is demonstrated by a test example and is also checked in its implementation in software for the UD4-S device based on standard specimens simulating flaws. Issues related to the solution of the direct and inverse problems of ultrasonic nondestructive testing are discussed.

Keywords

Inverse Problem Structural Material Test Object Nondestructive Testing Efficient Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Sviridov, Yu.B. and Veremeenko, S.V., Experimental-Mathematical Approach to the Construction and Application of DGS Diagrams, in 1-ya Natsional’naya nauchno-tekhnicheskaya konferentsiya i vystavka (Proc. of the 1st National Scientific and Technical Conference and Exhibition), Kishinev, October 21–24, 2003, pp. 38–41.Google Scholar
  2. 2.
    Sukhorukov, V.V., Vainberg, E.I., Kazhis, R.-I.Yu., and Abakumov, A.A., Nerazrushayushchii kontrol’. Kn. 5. Introskopiya i avtomatizatsiya kontrolya (Nondestructive Testing. Vol. 5. Introscopy and Inspection Automation), Moscow: Vysshaya Shkola, 1993.Google Scholar
  3. 3.
    Ermolov, I.N., Teoriya i praktika ul‘trazvukovogo kontrolya (Theory and Practice of Ultrasonic Inspection), Moscow: Mashinostroenie, 1981.Google Scholar
  4. 4.
    Krautkramer, J. and Krautkramer, H., Werkstoffprufung mit Ultraschall, Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer-Verlag 1986. Translated under the title Ultrazvukovoi kontrol’ materialov. Spravochnik, Moscow: Metallurgiya, 1991.Google Scholar
  5. 5.
    Nerazrushayushchii kontrol’ i diagnostika. Spravochnik (Nondestructive Testing and Diagnostics. Handbook), Klyuev, V.V., Ed., Moscow: Mashinostroenie, 1995.Google Scholar
  6. 6.
    Ermolov, I.N., Optimization of Testing Conditions by Ultrasonic Echo-Method. I., Defektoskopiya, 1996, no. 1, pp. 3–16.Google Scholar
  7. 7.
    Ermolov, I.N., Optimization of Testing Conditions by Ultrasonic Echo-Method. II. Calculation of Echo-Signals from Flaws, Defektoskopiya, 1996, no. 2, pp. 87–106.Google Scholar
  8. 8.
    Danilov, V.N., Ermolov, I.N., Calculations of Amplitude-Distance-Diameter Diagrams, Defektoskopiya, 2000, no. 7, pp. 35–43 [Rus. J. of Nondestructive Testing (Engl. Transl.), 2000, vol. 36, no. 7, p. 491].Google Scholar
  9. 9.
    Danilov, V.N. and Ermolov, I.N., Calculations of ADD Diagrams Based on Peaks of Reflected Acoustic Signals, Defektoskopiya, 2000, no. 12, pp. 35–42 [Rus. J. of Nondestructive Testing (Engl. Transl.), 2000, vol. 36, no. 12, p. 889].Google Scholar
  10. 10.
    Lutsenko, G.G., On the Measurement Accuracy of the Equivalent Diameter of a Flaw Using DGS Diagrams, Tekh. Diagnostika i Nerazrushayushchii Kontrol’, 2003, no. 2, pp. 27–31.Google Scholar
  11. 11.
    Davidenko, V.F. and Tkachev, V.S., Archive-Experimental or Adaptive-Calculated Settings of Modern Ultrasonic Flaw Detectors, in 4-ya Natsional’ya nauchno-tekhnicheskaya konferentsiya i vystavka “Nerazrushayushii kontrol’ i tekhnicheskaya diagnostika” (Proc. of the 4th National Scientific and Technical Conference and Exhibition “Nondestructive Testing and Technical Diagnostics”), Kiev, May 19–23, 2003, pp. 101–104.Google Scholar
  12. 12.
    Berezin, I.S. and Zhidkov, N.P., Metody vychislenii (Calculation Methods), Moscow: Fizmatgiz, 1962, vol. 1.Google Scholar
  13. 13.
    Kalitkin, N.N., Chislennye metody (Calculus of Approximations), Moscow: Nauka, 1978.Google Scholar
  14. 14.
    Popov, B.A. and Tesler, G.S., Priblizhenie funktsii dlya tekhnicheskikh prilozhenii (Approximation of Functions for Technical Applications), Kiev: Naukova Dumka, 1980.Google Scholar
  15. 15.
    Baker, J., Jr. and Graves-Morris, P., Pade Approximation; Translated under the title Approksimatsiya Pade, Moscow: Mir, 1986.Google Scholar
  16. 16.
    Panchenkov, A.N., Osnovy teorii predel’noi korrektnosti (Principles of Limit Correctness Theory), Moscow: Nauka, 1976.Google Scholar
  17. 17.
    Defedktoskop-tomograf ul‘razvukovoi UD4-S (UD4-S Ultrasonic Flaw Detector and Tomograph), Operating Manual VTM 038 RE, Kishinev, 2003.Google Scholar
  18. 18.
    GOST (State Standard) 18576–85: Nondestructive Testing. Railway Lines. Ultrasonic Methods, 1985.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • Yu. B. Sviridov
    • 1
  • A. S. Gaburov
    • 1
  • S. V. Veremeenko
    • 1
  • A. A. Pokladov
    • 1
  1. 1.AO VotumChisinauMoldova

Personalised recommendations