Russian Microelectronics

, Volume 34, Issue 5, pp 309–315 | Cite as

Tip-Shape Reconstruction for a Laterally Vibrating SPM Probe

  • A. P. Chuklanov
  • A. A. Bukharaev
  • P. A. Borodin
Materials and Microstructure Characterization


This study is concerned with the tip-shape reconstruction for the shear-force scanning probe microscope and the near-field scanning optical microscope, in which the probe executes lateral vibrations. The spatial resolution of the microscopes is directly dependent on the tip radius. A reconstruction method is proposed that employs specially designed test structures and is based on deconvolution. The method is used to generate images of tungsten and nickel wire probes, fabricated by electrochemical etching, and near-field optical-fiber probes. The results are verified by TEM imaging of the probes. By the same approach, correlation is revealed between reconstructed probe aperture and resolution for the near-field optical microscope.


Tungsten Deconvolution Reconstruction Method Probe Microscope Lateral Vibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Betzig, E., Finn, P.L., and Weiner, J.S., Combined Shear Force and Near-Field Scanning Optical Microscopy, Appl. Phys. Lett., 1992, vol. 60, pp. 2484–2486.CrossRefGoogle Scholar
  2. 2.
    Garcia, N., Munoz, M., and Zhao, Y.-W., Magnetoresistance in Excess of 200% in Ballistic Ni Nanocontacts at Room Temperature and 100 Oe, Phys. Rev. Lett., 1999, vol. 82, pp. 2923–2926.CrossRefGoogle Scholar
  3. 3.
    Garcia, N., Qiang, G.G., and Saveliev, I.G., Ballistic Magnetoresistance in Nanocontacts Electrochemically Grown between Macro-and Microscopic Ferromagnetic Electrodes, Appl. Phys. Lett., 2002, vol. 80, pp. 1785–1787.CrossRefGoogle Scholar
  4. 4.
    Chung, S.H., Munoz, M., and Garcia, N., Universal Scaling of Magnetoconductance in Magnetic Nanocontacts, J. Appl. Phys., 2003, vol. 93, pp. 7939–7944.CrossRefGoogle Scholar
  5. 5.
    Hua, S.Z. and Chorpa, H.D., 100,000% Ballistic Magnetoresistance in Stable Ni Nanocontacts at Room Temperature, Phys. Rev. B, 2002, vol. 67, p. 060401.CrossRefGoogle Scholar
  6. 6.
    Chorpa, H.D. and Hua, S.Z., Ballistic Magnetoresistance over 3000% in Ni Nanocontacts at Room Temperature, Phys. Rev. B, 2002, vol. 66, p. 020403.CrossRefGoogle Scholar
  7. 7.
    Bykov, V., Golovanov, A., and Shevyakov, V., Test Structure for SPM Tip Shape Deconvolution, Appl. Phys. A, 1998, vol. 66, p. 499.CrossRefGoogle Scholar
  8. 8.
    Bukharaev, A.A., Berdunov, N.V., Ovchinnikov, D.V., and Salikhov, K.M., Atomic Force Microscopy for Metrology of Micro-and Nanostructures, Mikroelektronika, 1997, vol. 26, no.3, pp. 163–175.Google Scholar
  9. 9.
    Bukharaev, A.A., Berdunov, N.V., Ovchinnikov, D.V., and Salikhov, K.M., Three-Dimensional Probe and Surface Reconstruction forAtomic Force Microscopy Using a Deconvolution Algorithm, Scanning Microsc., 1998, vol. 12, pp. 225–234.Google Scholar
  10. 10.
    Lemke, H., Goddenhenrich, T., Bochem, H.P., Hartmann, U., and Heiden, C., Improved Microtips for Scanning Probe Microscopy, Rev. Sci. Instrum., vol. 61, pp.2538–2541.Google Scholar
  11. 11.
    Markiewicz, P., Sidney, R., Cohen, S.R., Efimov, A., Ovchinnikov, D.V., and Bukharaev, A.A., SPM Tip Visualization through Deconvolution Using Various Characterizers: Optimization of the Protocol for Obtaining True Surface Topography from Experimentally Acquired Images, Probe Microsc., 1999, vol. 1, pp. 355–364.Google Scholar
  12. 12.
    Pohl, D.W., Denk, W., and Lanz, M., Optical Stethoscopy: Image Recording with Resolution λ/20, Appl. Phys. Lett., 1984, vol. 44, pp. 651–653.CrossRefGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • A. P. Chuklanov
    • 1
  • A. A. Bukharaev
    • 1
  • P. A. Borodin
    • 1
  1. 1.Zavoisky Physical-Technical Institute, Kazan Scientific CenterRussian Academy of SciencesKazan, TatarstanRussia

Personalised recommendations