Skip to main content
Log in

n-AlGaAs/GaAs/n-AlGaAs double quantum wells with an AlAs barrier: Relating the cladding doping level to structural and transport properties

  • Process Technologies
  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

Double quantum wells in the form of an AlGaAs/GaAs/AlGaAs heterostructure with an AlAs barrier a few monolayers thick are fabricated by MBE. Their structural and compositional characterization is carried out by double-crystal XRD and SIMS. Electron mobility is evaluated by Hall-effect measurements for different quantum-well thicknesses. Conditions are identified under which electron mobility can be enhanced by introduction of an ultrathin barrier into a single quantum well. The findings are analyzed from the viewpoint of interface structural quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Cazaux, J.-L., Geok-Ing, N.G., Pavlidis, D., and Chau, H.-F., An Analytical Approach to the Capacitance-Voltage Characteristics of Double-Heterojunction HEMTs, IEEE Trans. Electron Devices, 1988, vol. 35, pp. 1223–1231.

    Google Scholar 

  2. Nawaz, M., A Simple Analytical Charge Control Model for Double Delta Doped HEMTs, Solid-State Electron., 1999, vol. 43, pp. 687–690.

    Google Scholar 

  3. Požela, J., Jucienė, V., and Požela, K., Confined Electron-Optical Phonon Scattering Rates in 2D Structures Containing Electron and Phonon Walls, Semicond. Sci. Technol., 1995, vol. 10, pp. 1076–1083.

    Google Scholar 

  4. Požela, J., Požela, K., and Jucienė, V., Electron Mobility and Electron Scattering by Polar Optical Phonons in Heterostructure Quantum Wells, Fiz. Tekh. Poluprovodn. (St. Petersburg), 2000, vol. 34, issue9, pp. 1053–1057.

    Google Scholar 

  5. Tsuchiya, T. and Ando, T., Mobility Enhancement in Quantum Wells by Electronic-State Modulation, Phys. Rev. B, 1993, vol. 48, pp. 4599–4603.

    Google Scholar 

  6. Molecular Beam Epitaxy and Heterostructures, Chang, L.L. and Ploog, K., Eds., NATO ASI Ser., Ser. E, vol. 87, Dordrecht: Nijhoff, 1985. Translated under the title Molekulyarno-luchevaya epitaksiya i geterostruktury, Moscow: Mir, 1989.

  7. Shtrikman, H., Soibel, A., and Meirav, U., Superior Two-Dimensional Electron Gas on (511)A GaAs, Appl. Phys. Lett., 1998, vol. 72, no.2, pp. 185–187.

    Google Scholar 

  8. Avakyants, L.P., Bokov, P.Yu., Galiev, G.B., Kaminskii, V.E., Kul’bachinskii, V.A., Mokerov, V.G., and Chervyakov, A.V., Photoreflectance-Spectroscopy Study of Quantum Size Effects in AlxGa1 − x As/GaAs/AlxGa1 − x As Double Quantum Wells, Opt. Spektrosk., 2002, vol. 93, no.6, pp. 929–934.

    Google Scholar 

  9. Schmiedel, T., McCombe, B.D., Petrou, A., Dutta, M., and Newman, P.G., Subband Tuning in Semiconductor Quantum Wells Using Narrow Barriers, J. Appl. Phys., 1992, vol. 72, no.10, pp. 4753–4756.

    Google Scholar 

  10. Afanas’ev, A.M., Chuev, M.A., Imamov, R.M., Lomov, A.A., Mokerov, V.G., Fedorov, Yu.V., and Guk, A.V., Stacks of GaAs-InxGa1 − x As Bilayers Examined by Double-Crystal X-ray Diffractometry, Kristallografiya, 1997, vol. 42, no.3, pp. 514–523.

    Google Scholar 

  11. Afanas’ev, A.M., Chuev, M.A., Imamov, R.M., and Lomov, A.A., XRD Structure Determination of InxGa1 − x As Quantum-Well Interfaces, Kristallografiya, 2001, vol. 46, no.5, pp. 781–790.

    Google Scholar 

  12. Afanas’ev, A.M., Galiev, G.B., Imamov, R.M., Klimov, E.A., Lomov, A.A., Mokerov, V.G., Saraikin, V.V., and Chuev, M.A., AlxGa1 − x As/GaAs/AlxGa1 − x As Double Quantum Well with a Thin AlAs Interwell Barrier: Structural Characterization by SIMS and XRD, Mikroelektronika, 2003, vol. 32, no.3, pp. 202–209.

    Google Scholar 

  13. Lanzilloto, A.-M., Santos, M., and Shayegan, M., Secondary-Ion Mass Spectrometry Study of the Migration of Si in Planar-Doped GaAs and Al0.25Ga0.75As, Appl. Phys. Lett., 1989, vol. 55, no.14, pp. 1445–1447.

    Google Scholar 

  14. Schubert, E.F., Pfeiffer, L., West, K.W., Luftman, H.S., and Zydzik, G.J. Si δ-Doping of <001>-Oriented GaAs and AlxGa1 − x As Grown by Molecular-Beam Epitaxy, Appl. Phys. Lett., 1994, vol. 64, no.17, pp. 2238–2240.

    Google Scholar 

  15. Shubert, E.F., Delta Doping of III-V Compound Semiconductors: Fundamentals and Device Applications, J.Vac. Sci. Technol., A, 1990, vol. 8, no.3, pp. 2980–2996.

    Google Scholar 

  16. Lomov, A.A., Margushev, Z.Ch., and Fanchenko, S.S., Asymptotic-Bragg-Diffraction Characterization of Submicrometer Heteroepitaxial Layers, Mikroelektronika, 1990, vol. 19, no.5, pp. 448–452.

    Google Scholar 

  17. Imamov, R.M., Lomov, A.A., Sirochenko, V.P., Ignat’ev, A.S., Mokerov, V.G., Nemtsev, G.Z., and Fedorov, Yu.V., High-Resolution X-ray Diffraction Study of an InGaAs/GaAs Heterostructure, Fiz. Tekh. Poluprovodn. (St. Petersburg), 1994, vol. 28, issue8, pp. 1346–1352.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Mikroelektronika, Vol. 34, No. 2, 2005, pp. 98–109.

Original Russian Text Copyright © 2005 by Vasil’evskii, Galiev, Ganin, Imamov, Klimov, Lomov, Mokerov, Saraikin, Chuev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasil’evskii, I.S., Galiev, G.B., Ganin, G.V. et al. n-AlGaAs/GaAs/n-AlGaAs double quantum wells with an AlAs barrier: Relating the cladding doping level to structural and transport properties. Russ Microelectron 34, 78–87 (2005). https://doi.org/10.1007/s11180-005-0010-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11180-005-0010-y

Keywords

Navigation