Advertisement

Russian Journal of Marine Biology

, Volume 31, Issue 5, pp 331–334 | Cite as

Comparative in vitro Assessment of Antioxidant Activities of Low-Etherified Pectin from the Eelgrass Zostera marina and Antioxidative Medicines

  • E. A. Kolenchenko
  • L. N. Sonina
  • Yu. S. Khotimchenko
Pharmacology

Abstract

A comparative study of antioxidant activities of low-etherified pectin extracted from the eelgrass Zostera marina and of two antioxidative medicines, mildronat and emoxipin, was carried out using two in vitro methods allowing us to estimate the reducing activities of the compounds (FRAP assay), and their ability to impede iron- and ascorbate-induced oxidation of Tween 80 to malondialdehyde. It was found that zosterin pectin manifested higher reducing activity compared to the medicines. The inhibitory capacity of zosterin was lower than that of mildronat.

Key words

antioxidants antioxidant activity pectin zosterin Zostera marina FRAP assay 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Afanas'yev, S.P., Chirva, V.Yu., Katseva, G.N., et al., Modification of Titrimetric Method of Analysis of Pectin Substances, Khimiya Prirod. Soedin., 1984, no. 4, pp. 428–431.Google Scholar
  2. 2.
    Galaktionova, L.P., Molchanov, A.V., El'chaninova, S.A., and Varshavskii, B.Ya., Peroxidation Condition in Patients with Ulcer of Stomach and Duodenum, Klin. Lab. Diagnostika, 1998, no. 6, pp. 10–14.Google Scholar
  3. 3.
    Ivanova, I.L. and Yan'kova, V.I., Effect of Pectin of Marine Origin in Complex with Mineral Waters on Antioxidative System of Blood at Experimental Hyperlipidemia, Vopr. Pitaniya, 1998, no. 4, pp. 36–38.Google Scholar
  4. 4.
    Loenko, Yu.N., Artyukov, A.A., Kozlovskaya, E.P., et al., Zosterin (The Zosterin), Vladivostok: Dal'nauka, 1997Google Scholar
  5. 5.
    Hasina, E.I., Kolenchenko, E.A., Sgrebneva, M.N., et al., Antioxidant Activities of a Low Etherified Pectin from the Seagrass Zostera marina, Biol. Morya, 2003, vol. 29, no.4, pp. 291–293.Google Scholar
  6. 6.
    Benzie, I.F.F. and Strain, J.J., The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: the FRAP Assay, Anal. Biochem., 1996, vol. 239, no.1, pp. 70–76.CrossRefPubMedGoogle Scholar
  7. 7.
    Blumenkrantz, S. and Asboe-Haunsen, G., New Method for Quantitative Determination of Uronic Acids, Anal. Biochem., 1973, vol. 54, no.2, pp. 484–489.CrossRefPubMedGoogle Scholar
  8. 8.
    Fang, Y.Z., Yang S., and Wu, G.Y., Free Radicals, Antioxidants, and Nutrition, Nutrition, 2002, vol. 18, no.10, pp. 872–879.CrossRefPubMedGoogle Scholar
  9. 9.
    Gaetke, L.M. and Chow, C.K., Copper Toxicity, Oxidative Stress, and Antioxidant Nutrients, Toxicology, 2003, vol. 189, nos.1–2, pp. 147–163.Google Scholar
  10. 10.
    Halliwell, B., Role of Free Radicals in the Neurodegenerative Diseases—Therapeutic Implications for Antioxidant Treatment, Drug Aging., 2001, vol. 18, no.9, pp. 685–716.CrossRefGoogle Scholar
  11. 11.
    Halvorsen, B.L., Holte, K., Myhrstad, M.C.W., et al., A Systematic Screening of Total Antioxidants in Dietary Plants, J. Nutr., 2002, vol. 132, no.3, pp. 461–471.PubMedGoogle Scholar
  12. 12.
    Kaul, N., Devaraj, S., and Jialal, I., Alpha-Tocopherol and Atherosclerosis, Exp. Biol. Med., 2001, vol. 226, no.1, pp. 5–12.Google Scholar
  13. 13.
    Khotimchenko, Yu. S., Kolenchenko, E.A., Khotimchenko, M.Y., and Kovalev, V.V., Healing and Preventive Effects of Low-Etherified Pectin on Liver Injury Induced by Carbon Tetrachloride in Rats, Orien. Pharm. Exp. Med., 2004, vol. 4, no.1, pp. 28–36.Google Scholar
  14. 14.
    Kravtchenko, T.P. and Pilnic, A., A Simplified Method for the Determination of the Intrinsic Viscosity of Pectin Solution by Classical Viscosimetry, Gums and Stabilizers in the Food Industry, Oxford: IRL Press, 1990, vol. 5, pp. 281–285.Google Scholar
  15. 15.
    Ladas, E.J., Jacobson, J.S., Kennedy, D.D., et al., Antioxidants and Cancer Therapy: A Systematic Review, J. Clin. Oncol., 2004, vol. 22, no.3, pp. 517–528.PubMedGoogle Scholar
  16. 16.
    Matthaus, B., Antioxidant Activity of Extracts Obtained from Residues of Different Oilseeds, J. Agr. Food Chem., 2002, vol. 50, no.12, pp. 3444–3452.CrossRefGoogle Scholar
  17. 17.
    Ovodov, Yu. S., Ovodova, R.G., Shibaeva, V.I., and Mikheyskaya, L.V., Further Structural Studies of Zosterin, Carbohydr. Res., 1975, vol. 42, no.1, pp. 197–199.CrossRefGoogle Scholar
  18. 18.
    Ovodova, R.G., Vaskovsky, V.E., and Ovodov, Yu. S., The Pectic Substances of Zosteraceae, Carbohydr. Res., 1968, vol. 6, no.2, pp. 328–332.Google Scholar
  19. 19.
    Ruperez, P., Ahrazem, O., and Leal, J.A., Potential Antioxidant Capacity of Sulfates from the Edible Marine Brown Seaweed Fucus vesiculosus, J. Agr. Food Chem., 2002, vol. 50, no.4, pp. 840–845.CrossRefGoogle Scholar
  20. 20.
    Vertuani, S., Angusti, A., and Manfredini, S., The Antioxidants and Pro-Antioxidants Network: An Overview, Curr. Pharm. Design, 2004, vol. 10, no.14, pp. 1677–1694.CrossRefGoogle Scholar
  21. 21.
    Violi, F., Loffredo, L., Musella, L., and Marcoccia, A., Should Antioxidant Status Be Considered in Interventional Trials with Antioxidants? Heart, 2004, vol. 90, no.6, pp. 598–602.CrossRefPubMedGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • E. A. Kolenchenko
    • 1
  • L. N. Sonina
    • 2
  • Yu. S. Khotimchenko
    • 1
    • 2
  1. 1.Institute of Marine Biology, Far East DivisionRussian Academy of SciencesVladivostokRussia
  2. 2.Vladivostok State Medical UniversityVladivostokRussia

Personalised recommendations