Russian Journal of Organic Chemistry

, Volume 41, Issue 6, pp 807–810 | Cite as

A Simple Diastereoselective Synthesis of Chiral Nonracemic Aliphatic Amines

  • G. V. Grishina
  • E. R. Luk’yanenko
  • A. A. Borisenko


An efficient procedure has been developed for the diastereoselective synthesis of chiral aliphatic amines (diastereoisomeric excess >96%) from (1S)-N-(1-methylethylidene)-1-phenylethylamine, i.e., Schiff base derived from the simplest ketone (acetone) and (1S)-1-phenylethylamine. The procedure includes successive lithiation, alkylation, and reduction and is characterized by high regioselectivity in the formation of alkylated syn-Z-imines. Hydride reduction of the prochiral C=N bond in the latter gives mainly optically active aliphatic amines with R configuration. All reactions are performed as a one-pot process without isolation of intermediate products.


Acetone Organic Chemistry Ketone Hydride Alkylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wiehl, W. and Frahm, A.W., Chem. Ber., 1986, vol. 119, p. 2668.Google Scholar
  2. 2.
    Bolm, C., Schiffers, I., Dinter, C.L., Difrere, L., Gerlach, A., and Raabe, G., Synthesis, 2001, p. 1719.Google Scholar
  3. 3.
    Juaristi, E., Escalante, J., Leon-Romo, J.L., and Reyes, A., Tetrahedron: Asymmetry, 1998, vol. 9, p. 715.CrossRefGoogle Scholar
  4. 4.
    Juaristi, E., Leon-Romo, J.L., Reyes, A., and Escalante, J., Tetrahedron: Asymmetry, 1999, vol. 10, p. 2441.CrossRefGoogle Scholar
  5. 5.
    Lauktien, G., Volk, F.-J., and Frahm, A.W., Tetrahedron: Asymmetry, 1997, vol. 8, p. 3457.CrossRefGoogle Scholar
  6. 6.
    Mangelinckx, S., Giubellina, N., and De Kimpe, N., Chem. Rev., 2004, vol. 104, p. 2353.CrossRefPubMedGoogle Scholar
  7. 7.
    Houk, K.N., Strozier, R.W., Rondan, N.G., Frazer, R.R., and Chuaqui-Offermanns, N., J. Am. Chem. Soc., 1980, vol. 102, p. 1426.CrossRefGoogle Scholar
  8. 8.
    Frazer, R.R., Chuaqui-Offermanns, N., Houk, K.N., and Rondan, N.G., J. Organomet. Chem., 1981, vol. 206, p. 131.CrossRefGoogle Scholar
  9. 9.
    Smith, J.K., Bergbreiter, D.E., and Newcomb, M., J. Am. Chem. Soc., 1983, vol. 105, p. 4396.CrossRefGoogle Scholar
  10. 10.
    Frazer, R.R., Banville, J., and Dhawan, K.L., J. Am. Chem. Soc., 1978, vol. 100, p. 7999.CrossRefGoogle Scholar
  11. 11.
    Frazer, R.R. and Banville, J., J. Chem. Soc., Chem. Commun., 1979, p. 47.Google Scholar
  12. 12.
    Dunina, V.V., Rukhadze, E.G., and Potapov, V.M., Poluchenie i issledovanie opticheski aktivnykh veshchestv (Preparation and Study of Optically Active Substances), Moscow: Mosk. Gos. Univ., 1979, p. 292.Google Scholar
  13. 13.
    Charles, J.-P., Christol, H., and Solladie, G., Bull. Soc. Chim. Fr., 1970, no. 12, p. 4439.Google Scholar
  14. 14.
    Hattori, K., Nagano, M., Kato, T., Nakanishi, I., Imai, K., Kinoshita, T., and Sakane, K., Bioorg. Med. Chem. Lett., 1995, vol. 5, p. 2821.CrossRefGoogle Scholar
  15. 15.
    Moss, N., Gauthier, J., and Ferland, J.-M., Synlett, 1995, p. 142.Google Scholar
  16. 16.
    Bringmann, G., Jansen, J.R., and Rink, H.P., Angew. Chem., 1986, vol. 98, p. 917.Google Scholar
  17. 17.
    Taguchi, K. and Westheimer, F.H., J. Org. Chem., 1971, vol. 36, p. 1570.CrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • G. V. Grishina
    • 1
  • E. R. Luk’yanenko
    • 1
  • A. A. Borisenko
    • 1
  1. 1.Faculty of ChemistryLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations