Russian Journal of General Chemistry

, Volume 75, Issue 5, pp 790–794 | Cite as

Fluorescence Depolarization Kinetics of Neutral and Charged 2-(3′-Pyridyl)oxazole

  • V. V. Volchkov
  • G. V. Dem’yanov
  • M. V. Rusalov
  • T. I. Syreishchikova


The results of measurements of the starionary and time-resolved flurescence anisotropy and of the AM1 and INDO/S calculations were used for conformational analysis of a neutral molecule of the 2-(3′-pyridyl)oxazole series and of its N-ethyl cation. Most probably, the excitation of the quasi-planar rotamers of the cation, in contrast to the neutral molecule, is accompanied by a ∼90° turn of its Et-py fragment with the formation of a twisted charge-transfer conformation. According to the data obtained for ethanol and glycerol solutions and for the poly(methyl methacrylate) matrix at 20°C, the efficiency of the intramolecular relaxation is independent of the viscosity.


Methyl Viscosity Glycerol Anisotropy Methacrylate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Uzhinov, B.M., Dmitruk, S.L., and Druzhinin, S.I., Abstracts of Papers, XVI Int. Conf. on Photochemistry, Vancouver, 1993, p. 219.Google Scholar
  2. 2.
    Dmitruk, S.L., Cand. Sci. (Chem.) Dissertation, Moscow, 1994.Google Scholar
  3. 3.
    Nishimoto, E., Yamashita, S., Szabo, A.G., and Imoto, T., Biochemistry, 1998, vol. 37, no.16, p. 5599.PubMedGoogle Scholar
  4. 4.
    Lippert, E., Z. Naturforsch. (a), 1955, vol. 10, no.7, p. 541.Google Scholar
  5. 5.
    Grajcar, L. and Baudet, J., J. Mol. Struct., 1977, vol. 38, p. 121.Google Scholar
  6. 6.
    Volchkov, V.V., Druzhinin, S.I., Kossanyi, J.A., and Uzhinov, B.M., J. Fluorescence, 2000, vol. 10, no.2, p. 161.Google Scholar
  7. 7.
    Maroncelli, M. and Fleming, G.R., J. Chem. Phys., 1987, vol. 86, no.11, p. 6221.Google Scholar
  8. 8.
    Gaisenok, V.A. and Krylov, G.G., Opt. Spektrosk., 1986, vol. 60, no.5, p. 1175.Google Scholar
  9. 9.
    Akimov, A.V., Demyanov, G.B., Kurek, N.K., Molchanov, S.S., Paschenko, G.S., Syrejshchikova, T.I., Fedorchuk, R.V., and Yakimenko, M.N., Nucl. Instr. Meth. Phys. Res. (A), 1995, vol. 359, p. 345.Google Scholar
  10. 10.
    Dem’yanov, G.V., Isakova, S.I., Kurek, N.K., Syreishchikova, T.I., and Yakimenko, M.N., Kratk. Soobshch. Fiz. FIAN, 1995, nos. 11–12, p. 15.Google Scholar
  11. 11.
    Kauffman, J.M., Litak, P.T., Adams, J.K., Henry, R.A., and Hollins, R.A., J. Heterocyclic Chem., 1992, vol. 29, no.5, p. 1245.Google Scholar
  12. 12.
    Krasovitskii, V.M., Dyumaev, K.M., Afanasiadi, L.S., and Tur, I.N., Khim. Geterotsikl. Soedin., 1986, no. 2, p. 279.Google Scholar
  13. 13.
    Melhuish, W.H., J. Phys. Chem., 1961, vol. 65, no.2, p. 229.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • V. V. Volchkov
    • 1
  • G. V. Dem’yanov
    • 2
  • M. V. Rusalov
    • 1
  • T. I. Syreishchikova
    • 2
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations